Primal and dual convergence of a proximal point exponential penalty method for linear programming

被引:0
|
作者
F. Alvarez
R. Cominetti
机构
[1] Universidad de Chile,
[2] Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático,undefined
[3] Casilla 170/3,undefined
[4] Correo 3,undefined
[5] Santiago,undefined
[6] Chile,undefined
来源
Mathematical Programming | 2002年 / 93卷
关键词
Key words: proximal point – exponential penalty – linear programming; Mathematics Subject Classification (2000): 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the diagonal inexact proximal point iteration \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{u^k-u^{k-1}}{\lambda_k}\in-\partial_{\varepsilon_k} f( u^k,r_k) + \nu^k$$\end{document} where f(x,r)=cTx+r∑exp[(Aix-bi)/r] is the exponential penalty approximation of the linear program min{cTx:Ax≤b}. We prove that under an appropriate choice of the sequences λk, εk and with some control on the residual νk, for every rk→0+ the sequence uk converges towards an optimal point u∞ of the linear program. We also study the convergence of the associated dual sequence μik=exp[(Aiuk-bi)/rk] towards a dual optimal solution.
引用
收藏
页码:87 / 96
页数:9
相关论文
共 50 条