Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups

被引:0
|
作者
A. P. Mashtakov
Yu. L. Sachkov
机构
[1] Eindhoven University of Technology,
[2] University of Hradec Králové,undefined
来源
Differential Equations | 2015年 / 51卷
关键词
Hamiltonian System; Hamiltonian Vector; Pontryagin Maximum Principle; Casimir Function; Liouville Integrability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider left-invariant sub-Riemannian problems on three-dimensional unimodular Lie groups. We show that the Hamiltonian system of the Pontryagin maximum principle for such problems is Liouville integrable and even superintegrable (i.e., has four independent integrals, three of which are in involution).
引用
收藏
页码:1476 / 1483
页数:7
相关论文
共 50 条
  • [41] A classification of left-invariant symplectic structures on some Lie groups
    Luis Pedro Castellanos Moscoso
    Hiroshi Tamaru
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 471 - 491
  • [42] The signature of the Ricci curvature of left-invariant Riemannian metrics on nilpotent Lie groups
    Ngaha, M. B. Djiadeu
    Boucetta, M.
    Kamga, J. Wouafo
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 47 : 26 - 42
  • [43] On the moduli spaces of left-invariant pseudo-Riemannian metrics on Lie groups
    Kubo, Akira
    Onda, Kensuke
    Taketomi, Yuichiro
    Tamaru, Hiroshi
    HIROSHIMA MATHEMATICAL JOURNAL, 2016, 46 (03) : 357 - 374
  • [44] Flat left-invariant pseudo-Riemannian metrics on quadratic Lie groups
    Benayadi, Said
    Lebzioui, Hicham
    JOURNAL OF ALGEBRA, 2022, 593 : 1 - 25
  • [45] Left-invariant pseudo-Riemannian metrics on Lie groups: The null cone
    Hervik, Sigbjorn
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97
  • [46] Riemannian Lie groups with no left-invariant complex-valued harmonic morphisms
    Nordstrom, Jonas
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 45 (01) : 1 - 10
  • [47] ON THE COMPLETENESS OF LEFT-INVARIANT PSEUDO-RIEMANNIAN METRICS ON LIE-GROUPS
    ALEKSEEVSKII, DV
    PUTKO, BA
    LECTURE NOTES IN MATHEMATICS, 1990, 1453 : 171 - 185
  • [48] Milnor-type theorems for left-invariant Riemannian metrics on Lie groups
    Hashinaga, Takahiro
    Tamaru, Hiroshi
    Terada, Kazuhiro
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (02) : 669 - 684
  • [49] Riemannian Lie groups with no left-invariant complex-valued harmonic morphisms
    Jonas Nordström
    Annals of Global Analysis and Geometry, 2014, 45 : 1 - 10
  • [50] LIE GROUPS WITH ALL LEFT-INVARIANT SEMI-RIEMANNIAN METRICS COMPLETE
    Elshafei, Ahmed
    Ferreira, Ana cristina
    Sanchez, Miguel
    Zeghib, Abdelghani
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (08) : 5837 - 5862