Cesàro sums and algebra homomorphisms of bounded operators

被引:0
|
作者
Luciano Abadias
Carlos Lizama
Pedro J. Miana
M. Pilar Velasco
机构
[1] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[2] Universidad de Santiago de Chile,Departamento de Matemática y Ciencia de la Computación
[3] Universidad de Zaragoza,Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones
[4] Instituto de Matemática Interdisciplinar,Centro Universitario de la Defensa, Instituto Universitario de Matemáticas y Aplicaciones
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complex Banach space. The connection between algebra homomorphisms defined on subalgebras of the Banach algebra l1(N0) and fractional versions of Cesàro sums of a linear operator T ∈ B(X) is established. In particular, we show that every (C, α)-bounded operator T induces an algebra homomorphism — and it is in fact characterized by such an algebra homomorphism. Our method is based on some sequence kernels, Weyl fractional difference calculus and convolution Banach algebras that are introduced and deeply examined. To illustrate our results, improvements to bounds for Abel means, new insights on the (C, α)-boundedness of the resolvent operator for temperated a-times integrated semigroups, and examples of bounded homomorphisms are given in the last section.
引用
收藏
页码:471 / 505
页数:34
相关论文
共 50 条