Four-State Non-malleable Codes with Explicit Constant Rate

被引:0
|
作者
Bhavana Kanukurthi
Sai Lakshmi Bhavana Obbattu
Sruthi Sekar
机构
[1] Indian Institute of Science,Department of Computer Science and Automation
[2] Indian Institute of Science,Department of Mathematics
来源
Journal of Cryptology | 2020年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs (ITCS 2010), provide a powerful guarantee in scenarios where the classical notion of error-correcting codes cannot provide any guarantee: a decoded message is either the same or completely independent of the underlying message, regardless of the number of errors introduced into the codeword. Informally, NMCs are defined with respect to a family of tampering functions F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} and guarantee that any tampered codeword decodes either to the same message or to an independent message, so long as it is tampered using a function f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {F}$$\end{document}. One of the well-studied tampering families for NMCs is the t-split-state family, where the adversary tampers each of the t“states” of a codeword, arbitrarily but independently. Cheraghchi and Guruswami (TCC 2014) obtain a rate-1 non-malleable code for the case where t=O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = \mathcal {O}(n)$$\end{document} with n being the codeword length and, in (ITCS 2014), show an upper bound of 1-1/t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/t$$\end{document} on the best achievable rate for any t-split state NMC. For t=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=10$$\end{document}, Chattopadhyay and Zuckerman (FOCS 2014) achieve a constant-rate construction where the constant is unknown. In summary, there is no known construction of an NMC with an explicit constant rate for any t=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t= o(n)$$\end{document}, let alone one that comes close to matching Cheraghchi and Guruswami’s lowerbound! In this work, we construct an efficient non-malleable code in the t-split-state model, for t=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=4$$\end{document}, that achieves a constant rate of 13+ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3+\zeta }$$\end{document}, for any constant ζ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta > 0$$\end{document}, and error 2-Ω(ℓ/logc+1ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-\varOmega (\ell / log^{c+1} \ell )}$$\end{document}, where ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is the length of the message and c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c > 0$$\end{document} is a constant.
引用
收藏
页码:1044 / 1079
页数:35
相关论文
共 50 条
  • [41] Concurrent non-malleable zero-knowledge and simultaneous resettable non-malleable zero-knowledge in constant rounds
    Yan, Zhenbin
    Deng, Yi
    Sun, Yiru
    CYBERSECURITY, 2018, 1 (01)
  • [42] Continuously non-malleable codes from block ciphers in split-state model
    Anit Kumar Ghosal
    Dipanwita Roychowdhury
    Cybersecurity, 6
  • [43] Split-State Non-Malleable Codes and Secret Sharing Schemes for Quantum Messages
    Boddu, Naresh Goud
    Goyal, Vipul
    Jain, Rahul
    Ribeiro, João
    arXiv, 2023,
  • [44] Continuously non-malleable codes from block ciphers in split-state model
    Ghosal, Anit Kumar
    Roychowdhury, Dipanwita
    CYBERSECURITY, 2023, 6 (01)
  • [45] Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions
    Ostrovsky, Rafail
    Persiano, Giuseppe
    Venturi, Daniele
    Visconti, Ivan
    ADVANCES IN CRYPTOLOGY - CRYPTO 2018, PT III, 2018, 10993 : 608 - 639
  • [46] Split-State Non-Malleable Codes and Secret Sharing Schemes for Quantum Messages
    NTT Research, Sunnyvale
    CA
    94085, United States
    不详
    不详
    2829-516, Portugal
    不详
    119077, Singapore
    IEEE Trans. Inf. Theory,
  • [47] Non-Malleable Codes from the Wire-Tap Channel
    Chabanne, Herve
    Cohen, Gerard
    Flori, Jean-Pierre
    Patey, Alain
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [48] Non-malleable Codes for Bounded Parallel-Time Tampering
    Dachman-Soled, Dana
    Komargodski, Ilan
    Pass, Rafael
    ADVANCES IN CRYPTOLOGY - CRYPTO 2021, PT III, 2021, 12827 : 535 - 565
  • [49] Information-Theoretic Local Non-malleable Codes and Their Applications
    Chandran, Nishanth
    Kanukurthi, Bhavana
    Raghuraman, Srinivasan
    THEORY OF CRYPTOGRAPHY, TCC 2016-A, PT II, 2016, 9563 : 367 - 392
  • [50] Non-malleable Codes from Two-Source Extractors
    Dziembowski, Stefan
    Kazana, Tomasz
    Obremski, Maciej
    ADVANCES IN CRYPTOLOGY - CRYPTO 2013, PT II, 2013, 8043 : 239 - 257