Four-State Non-malleable Codes with Explicit Constant Rate

被引:0
|
作者
Bhavana Kanukurthi
Sai Lakshmi Bhavana Obbattu
Sruthi Sekar
机构
[1] Indian Institute of Science,Department of Computer Science and Automation
[2] Indian Institute of Science,Department of Mathematics
来源
Journal of Cryptology | 2020年 / 33卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Non-malleable codes (NMCs), introduced by Dziembowski, Pietrzak and Wichs (ITCS 2010), provide a powerful guarantee in scenarios where the classical notion of error-correcting codes cannot provide any guarantee: a decoded message is either the same or completely independent of the underlying message, regardless of the number of errors introduced into the codeword. Informally, NMCs are defined with respect to a family of tampering functions F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} and guarantee that any tampered codeword decodes either to the same message or to an independent message, so long as it is tampered using a function f∈F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in \mathcal {F}$$\end{document}. One of the well-studied tampering families for NMCs is the t-split-state family, where the adversary tampers each of the t“states” of a codeword, arbitrarily but independently. Cheraghchi and Guruswami (TCC 2014) obtain a rate-1 non-malleable code for the case where t=O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = \mathcal {O}(n)$$\end{document} with n being the codeword length and, in (ITCS 2014), show an upper bound of 1-1/t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/t$$\end{document} on the best achievable rate for any t-split state NMC. For t=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=10$$\end{document}, Chattopadhyay and Zuckerman (FOCS 2014) achieve a constant-rate construction where the constant is unknown. In summary, there is no known construction of an NMC with an explicit constant rate for any t=o(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t= o(n)$$\end{document}, let alone one that comes close to matching Cheraghchi and Guruswami’s lowerbound! In this work, we construct an efficient non-malleable code in the t-split-state model, for t=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=4$$\end{document}, that achieves a constant rate of 13+ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3+\zeta }$$\end{document}, for any constant ζ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta > 0$$\end{document}, and error 2-Ω(ℓ/logc+1ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-\varOmega (\ell / log^{c+1} \ell )}$$\end{document}, where ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} is the length of the message and c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c > 0$$\end{document} is a constant.
引用
收藏
页码:1044 / 1079
页数:35
相关论文
共 50 条
  • [1] Four-State Non-malleable Codes with Explicit Constant Rate
    Kanukurthi, Bhavana
    Obbattu, Sai Lakshmi Bhavana
    Sekar, Sruthi
    JOURNAL OF CRYPTOLOGY, 2020, 33 (03) : 1044 - 1079
  • [2] Four-State Non-malleable Codes with Explicit Constant Rate
    Kanukurthi, Bhavana
    Obbattu, Sai Lakshmi Bhavana
    Sekar, Sruthi
    THEORY OF CRYPTOGRAPHY, TCC 2017, PT II, 2017, 10678 : 344 - 375
  • [3] Explicit Rate-1 Non-malleable Codes for Local Tampering
    Gupta, Divya
    Maji, Hemanta K.
    Wang, Mingyuan
    ADVANCES IN CRYPTOLOGY - CRYPTO 2019, PT 1, 2019, 11692 : 435 - 466
  • [4] Non-Malleable Codes Against Constant Split-State Tampering
    Chattopadhyay, Eshan
    Zuckerman, David
    2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, : 306 - 315
  • [5] Explicit Non-malleable Codes from Bipartite Graphs
    Satake, Shohei
    Gu, Yujie
    Sakurai, Kouichi
    ARITHMETIC OF FINITE FIELDS, WAIFI 2022, 2023, 13638 : 221 - 236
  • [6] Non-Malleable Codes
    Dziembowski, Stefan
    Pietrzak, Krzysztof
    Wichs, Daniel
    JOURNAL OF THE ACM, 2018, 65 (04)
  • [7] A constant rate non-malleable code in the split-state model
    Aggarwal, Divesh
    Obremski, Maciej
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 1285 - 1294
  • [8] Capacity of Non-Malleable Codes
    Cheraghchi, Mahdi
    Guruswami, Venkatesan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1097 - 1118
  • [9] Continuous Non-malleable Codes
    Faust, Sebastian
    Mukherjee, Pratyay
    Nielsen, Jesper Buus
    Venturi, Daniele
    THEORY OF CRYPTOGRAPHY (TCC 2014), 2014, 8349 : 465 - 488
  • [10] Rate One-Third Non-malleable Codes
    Aggarwal, Divesh
    Kanukurthi, Bhavana
    Obbattu, Sai Lakshmi Bhavana
    Obremski, Maciej
    Sekar, Sruthi
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 1364 - 1377