Reaction-Diffusion in Nonsmooth and Closed Domains

被引:0
|
作者
Ugur G Abdulla
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
来源
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Weak Solution; Functional Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the Dirichlet problem for the parabolic equation[inline-graphic not available: see fulltext] in a nonsmooth and closed domain[inline-graphic not available: see fulltext] possibly formed with irregular surfaces and having a characteristic vertex point. Existence, boundary regularity, uniqueness, and comparison results are established. The main objective of the paper is to express the criteria for the well-posedness in terms of the local modulus of lower semicontinuity of the boundary manifold. The two key problems in that context are the boundary regularity of the weak solution and the question whether any weak solution is at the same time a viscosity solution.
引用
收藏
相关论文
共 50 条
  • [21] Propagation speed for reaction-diffusion equations in general domains
    Berestycki, H
    Hamel, F
    Nadirashvili, N
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (03) : 163 - 168
  • [22] Numerical simulation of reaction-diffusion equations on spherical domains
    Amdjadi, Faridon
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) : 1592 - 1595
  • [23] PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS
    Gonzalez, Libardo A.
    Vanegas, Juan C.
    Garzon, Diego A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02): : 145 - 161
  • [24] On the qualitative theory of a reaction-diffusion system on bounded domains
    Okoya, S. S.
    Indian Journal of Pure and Applied Mathematics, 28 (02):
  • [25] On the Kneser property for reaction-diffusion systems on unbounded domains
    Morillas, Francisco
    Valero, Jose
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (18) : 3029 - 3040
  • [26] Wave solutions to reaction-diffusion systems in perforated domains
    Heinze, S
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 661 - 676
  • [27] Reaction-diffusion in a closed domain formed by irregular curves
    Abdulla, UG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) : 480 - 492
  • [28] ZERO-DIFFUSION DOMAINS IN REACTION-DIFFUSION MORPHOGENETIC AND EPIDEMIOLOGIC PROCESSES
    Demongeot, Jacques
    Gaudart, Jean
    Lontos, Athanasios
    Mintsa, Julie
    Promayon, Emmanuel
    Rachdi, Mustapha
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (02):
  • [29] Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains
    Abad, E.
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    Le Vot, F.
    Yuste, S. B.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [30] Dynamical analysis for a reaction-diffusion HFMD model with nonsmooth saturation treatment function
    Shi, Lei
    Zhao, Hongyong
    Wu, Daiyong
    Zhao, Hongyong (zhaohy@nuaa.edu.cn), 1600, Elsevier B.V. (95):