New fixed point theorems on b-metric spaces with applications to coupled fixed point theory

被引:0
|
作者
Monica-Felicia Bota
Liliana Guran
Adrian Petruşel
机构
[1] Babeş-Bolyai University Cluj-Napoca,Faculty of Mathematics and Computer Science
[2] Western Vasile Goldiş University of Arad,Department of Pharmaceutical Sciences
[3] Academy of Romanian Scientists,undefined
关键词
Fixed point; -metric space; coupled fixed point; ćirić-type operator; Ulam–Hyers stability; well-posedness; Primary 47H10; Secondary 54H25; 46T99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X, d) be a complete b-metric space endowed with a partial order relation and f:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:X\rightarrow X$$\end{document} be a Ćirić type operator. In this paper, an extended study of the fixed point equation x=f(x),x∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=f(x), \ x\in X$$\end{document}, is considered. As an application, coupled fixed point results are given in the same framework. Our results generalize some recent theorems in the literature.
引用
收藏
相关论文
共 50 条
  • [21] COUPLED FIXED POINT THEOREMS FOR SYMMETRIC CONTRACTIONS IN b-METRIC SPACES WITH APPLICATIONS TO OPERATOR EQUATION SYSTEMS
    Petrusel, A.
    Petrusel, G.
    Samet, B.
    Yao, J. -C.
    [J]. FIXED POINT THEORY, 2016, 17 (02): : 457 - 475
  • [22] Coupled fixed point theorems for single-valued operators in b-metric spaces
    Monica-Felicia Bota
    Adrian Petruşel
    Gabriela Petruşel
    Bessem Samet
    [J]. Fixed Point Theory and Applications, 2015
  • [23] Coupled fixed point theorems for single-valued operators in b-metric spaces
    Bota, Monica-Felicia
    Petrusel, Adrian
    Petrusel, Gabriela
    Samet, Bessem
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 15
  • [24] Some common coupled fixed point theorems for generalized contraction in b-metric spaces
    Malhotra, Nidhi
    Bansal, Bindu
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (01): : 8 - 16
  • [25] A result on the coupled fixed point theorems in C*-algebra valued b-metric spaces
    Ozer, Ozen
    Omran, Saleh
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 722 - 730
  • [26] Hybrid Coupled Fixed Point Theorems in Metric Spaces with Applications
    Shoaib, Muhammad
    Sarwar, Muhammad
    Abdeljawad, Thabet
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [27] Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications
    Abdou, Afrah A. N.
    Alasmari, Maryam F. S.
    [J]. AIMS MATHEMATICS, 2021, 6 (06): : 5465 - 5478
  • [28] Fixed Point Theorems for Geraghty Contraction Type Mappings in b-Metric Spaces and Applications
    Faraji, Hamid
    Savic, Dragana
    Radenovic, Stojan
    [J]. AXIOMS, 2019, 8 (01)
  • [29] FIXED POINT THEOREMS FOR GENERALIZED (αη)EB -CONTRACTIONS IN EXTENDED B-METRIC SPACES WITH APPLICATIONS
    Alasmari, Maryam F. S.
    Abdou, Afrah A. N.
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 12 (04): : 15 - 31
  • [30] Fixed point theorems for operators with a contractive iterate in b-metric spaces
    Bota, Monica-Felicia
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (04): : 435 - 442