Climate change effects on Antarctic benthos: a spatially explicit model approach

被引:0
|
作者
Luciana Torre
Paulo C. Carmona Tabares
Fernando Momo
João F. C. A. Meyer
Ricardo Sahade
机构
[1] Instituto de Diversidad y Ecología Animal (CONICET-UNC),Marine Ecology
[2] Universidad Nacional de Córdoba,Instituto de Ciencias
[3] Facultad de Ciencias Exactas Físicas y Naturales,INEDES
[4] .,IMECC
[5] Universidad del Quindío,undefined
[6] Universidad Nacional de General Sarmiento,undefined
[7] Universidad Nacional de Luján - CONICET,undefined
[8] UNICAMP,undefined
来源
Climatic Change | 2017年 / 141卷
关键词
Sediment Load; Benthic Community; Sediment Discharge; Potter Cove; Benthic Community Structure;
D O I
暂无
中图分类号
学科分类号
摘要
The Antarctic Peninsula is one of the regions on the Earth with the clearest evidence of recent and fast air warming. This air temperature rise has caused massive glacier retreat leading to an increased influx of glacier meltwater which entails hydrological changes in coastal waters, increasing sediment input and ice-scouring impact regime. It has been hypothesized that an increase of sediment load due to glacier retreat resulted in a remarkable benthic community shift in Potter Cove, a small inlet of the South Shetland Islands. In order to test this hypothesis, we developed an explicit spatial model to explore the link between sedimentation and ice-scouring increase upon four of the most conspicuous benthic species. This is a valuable novel approach since disturbances are strongly dependent of the space. The model takes into account sediment and population dynamics with Lotka-Volterra competition, a sediment-dependent mortality term and a randomized ice-scouring biomass removal. With the developed algorithm, and using a MATLAB environment, numerical simulations for scenarios with different sedimentation and ice-impact rates were undertaken in order to evaluate the effect of this phenomenon on biological dynamics. Comparing simulation results with biological data, the model not only recreates the spatial community distribution pattern but also seems to be able to recreate the shifts in abundance under sedimentation enhancement, pointing out its importance as a structuring factor of polar benthic communities. Considering the challenges of Antarctic field work, this model represents a powerful tool for assessing, understanding, and predicting the effects of climate change on threatened Antarctic coastal ecosystems.
引用
收藏
页码:733 / 746
页数:13
相关论文
共 50 条
  • [41] Radiocarbon bomb spike reveals biological effects of Antarctic climate change
    Clarke, Laurence J.
    Robinson, Sharon A.
    Hua, Quan
    Ayre, David J.
    Fink, David
    GLOBAL CHANGE BIOLOGY, 2012, 18 (01) : 301 - 310
  • [42] Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil
    Gomes, L. C.
    Bianchi, F. J. J. A.
    Cardoso, I. M.
    Fernandes, R. B. A.
    Fernandes Filho, E., I
    Schulte, R. P. O.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2020, 294
  • [43] Climate change mitigation in Canada’s forest sector: a spatially explicit case study for two regions
    C. E. Smyth
    B. P. Smiley
    M. Magnan
    R. Birdsey
    A. J. Dugan
    M. Olguin
    V. S. Mascorro
    W. A. Kurz
    Carbon Balance and Management, 13
  • [44] Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions
    Smyth, C. E.
    Smiley, B. P.
    Magnan, M.
    Birdsey, R.
    Dugan, A. J.
    Olguin, M.
    Mascorro, V. S.
    Kurz, W. A.
    CARBON BALANCE AND MANAGEMENT, 2018, 13
  • [45] Agricultural change in the Pastaza River Basin: A spatially explicit model of native Amazonian cultivation
    Lopez, Santiago
    Sierra, Rodrigo
    APPLIED GEOGRAPHY, 2010, 30 (03) : 355 - 369
  • [46] A spatially explicit Markov model of land-cover change in southern Mexico.
    Geoghegan, J
    Ogneva-Himmelberger, Y
    Turner, BL
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 1997, 79 (05) : 1714 - 1714
  • [47] A spatially explicit scenario-driven model of adaptive capacity to global change in Europe
    Acosta, Lilibeth
    Klein, Richard J. T.
    Reidsma, Pytrik
    Metzger, Marc J.
    Rounsevell, Mark D. A.
    Leemans, Rik
    Schroeter, Dagmar
    GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2013, 23 (05): : 1211 - 1224
  • [48] Impact of climate change on Antarctic krill
    Flores, H.
    Atkinson, A.
    Kawaguchi, S.
    Krafft, B. A.
    Milinevsky, G.
    Nicol, S.
    Reiss, C.
    Tarling, G. A.
    Werner, R.
    Rebolledo, E. Bravo
    Cirelli, V.
    Cuzin-Roudy, J.
    Fielding, S.
    Groeneveld, J. J.
    Haraldsson, M.
    Lombana, A.
    Marschoff, E.
    Meyer, B.
    Pakhomov, E. A.
    Rombola, E.
    Schmidt, K.
    Siegel, V.
    Teschke, M.
    Tonkes, H.
    Toullec, J. Y.
    Trathan, P. N.
    Tremblay, N.
    Van de Putte, A. P.
    van Franeker, J. A.
    Werner, T.
    MARINE ECOLOGY PROGRESS SERIES, 2012, 458 : 1 - 19
  • [49] Influence of climate change on Antarctic flora
    Singh, Jaswant
    Singh, Rudra P.
    Khare, Rajni
    POLAR SCIENCE, 2018, 18 : 94 - 101
  • [50] Antarctic climate change and the environment: an update
    Turner, John
    Barrand, Nicholas E.
    Bracegirdle, Thomas J.
    Convey, Peter
    Hodgson, Dominic A.
    Jarvis, Martin
    Jenkins, Adrian
    Marshall, Gareth
    Meredith, Michael P.
    Roscoe, Howard
    Shanklin, Jon
    French, John
    Goosse, Hugues
    Guglielmin, Mauro
    Gutt, Julian
    Jacobs, Stan
    Kennicutt, Marlon C., II
    Masson-Delmotte, Valerie
    Mayewski, Paul
    Navarro, Francisco
    Robinson, Sharon
    Scambos, Ted
    Sparrow, Mike
    Summerhayes, Colin
    Speer, Kevin
    Klepikov, Alexander
    POLAR RECORD, 2014, 50 (03) : 237 - 259