Thermodynamics of the In|In+3 Electrode in HCl + InCl3 Solutions

被引:0
|
作者
Rabindra N. Roy
Lakshmi N. Roy
Darin Gregory
Kathleen Kuhler
Shahaf Ashkenazi
Stephanie Kiefer
Kenneth S. Pitzer
机构
[1] Drury University,Hoffman Department of Chemistry
来源
Journal of Solution Chemistry | 2007年 / 36卷
关键词
Activity coefficient; Emf; Harned’s equations; Standard potential; Indium chloride; Mixtures of electrolytes;
D O I
暂无
中图分类号
学科分类号
摘要
Electromotive force measurements have been made using the cell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mbox{In(s)}|\mbox{HCl }(m_{\mathrm{A}}),\mbox{InCl}_{3}(m_{\mathrm{B}}),\mbox{H}_{2}\mbox{O}|\mbox{AgCl, Ag}$$\end{document} in the ionic strength range of I=0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol⋅kg−1 at 25 °C. The value of Eo, the standard potential of the In/In3+ electrode, has been determined at 25 °C. Our value of Eo (−0.3371 V) at 25 °C obtained from our measurements is in good agreement with −0.336 (Hakomori, J. Am. Chem. Soc. 52: 2372–2376, 1930) and −0.3382 V (Covington et al., J. Chem. Soc. 4394–4401, 1963). The activity coefficients of InCl3 as well as Harned interaction coefficients have been determined at 25 °C for each of the experimental ionic strengths at ionic strength fractions of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of HCl. Harned’s rule for the salt is obeyed at I=0.05,0.1 and 0.25 mol⋅kg−1 but the quadratic terms are needed for higher ionic strengths. These data, together with others for the activity coefficient of HCl in the same solutions, have been treated by the ion-interaction (Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, 1991) equations in a previous publication.
引用
收藏
页码:1669 / 1677
页数:8
相关论文
共 50 条
  • [31] InCl3: A Versatile Catalyst for Synthesizing a Broad Spectrum of Heterocycles
    Mahato, Sanjit K.
    Acharya, Chiranjit
    Wellington, Kevin W.
    Bhattacharjee, Pinaki
    Jaisankar, Parasuraman
    ACS OMEGA, 2020, 5 (06): : 2503 - 2519
  • [32] Theoretical Investigation of the Mechanism of the Hock Rearrangement with InCl3 as Catalyst
    Fayet, Agathe
    Bourcier, Sophie
    Casaretto, Nicolas
    Nay, Bastien
    Frison, Gilles
    CHEMCATCHEM, 2023, 15 (16)
  • [33] IR-SPECTRUM OF INCL3 IN SOLID ARGON/ARGON
    PONG, RGS
    SHIRK, AE
    SHIRK, JS
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1977, 66 (01) : 35 - 40
  • [34] An unexpected reaction of indole derivatives and EAA catalyzed with InCl3
    Wang, Zunyuan
    Li, Xiaoyu
    Pan, Youlu
    Ma, Zhen
    Shen, Zhengrong
    Huang, Wenhai
    MOLECULAR CATALYSIS, 2023, 540
  • [35] Thermodynamics of the system InCl3-HCl-H2O at 25 degrees C
    Pitzer, KS
    Roy, RN
    Wang, PM
    JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (20): : 4120 - 4126
  • [36] Standard potential of the In/In+3 electrode at 25°C.
    Gregory, DR
    Ott, MG
    Metz, KS
    Roy, RN
    Roy, LN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U281 - U281
  • [37] Thermodynamics of HCl+InCl3+H2O from 5 to 55°C.
    Good, WS
    Beasley, TU
    Franklin, J
    Morrison, D
    Roy, RN
    Roy, LN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 215 : U280 - U280
  • [38] Effect of InCl3 on the addition of Grignard reagents to α,β-unsaturated carbonyl compounds
    Kelly, BG
    Gilheany, DG
    TETRAHEDRON LETTERS, 2002, 43 (05) : 887 - 890
  • [39] Comparative toxicity and distribution of InCl3 and In2O3 nanoparticles in rats
    Amiri, Asghar
    TOXIN REVIEWS, 2016, 35 (3-4) : 116 - 120
  • [40] Synthesis of colloidal InSb nanocrystals via in situ activation of InCl3
    Tamang, Sudarsan
    Kim, Kyungnam
    Choi, Hyekyoung
    Kim, Youngsik
    Jeong, Sohee
    DALTON TRANSACTIONS, 2015, 44 (38) : 16923 - 16928