Thermodynamics of the In|In+3 Electrode in HCl + InCl3 Solutions

被引:0
|
作者
Rabindra N. Roy
Lakshmi N. Roy
Darin Gregory
Kathleen Kuhler
Shahaf Ashkenazi
Stephanie Kiefer
Kenneth S. Pitzer
机构
[1] Drury University,Hoffman Department of Chemistry
来源
关键词
Activity coefficient; Emf; Harned’s equations; Standard potential; Indium chloride; Mixtures of electrolytes;
D O I
暂无
中图分类号
学科分类号
摘要
Electromotive force measurements have been made using the cell \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mbox{In(s)}|\mbox{HCl }(m_{\mathrm{A}}),\mbox{InCl}_{3}(m_{\mathrm{B}}),\mbox{H}_{2}\mbox{O}|\mbox{AgCl, Ag}$$\end{document} in the ionic strength range of I=0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol⋅kg−1 at 25 °C. The value of Eo, the standard potential of the In/In3+ electrode, has been determined at 25 °C. Our value of Eo (−0.3371 V) at 25 °C obtained from our measurements is in good agreement with −0.336 (Hakomori, J. Am. Chem. Soc. 52: 2372–2376, 1930) and −0.3382 V (Covington et al., J. Chem. Soc. 4394–4401, 1963). The activity coefficients of InCl3 as well as Harned interaction coefficients have been determined at 25 °C for each of the experimental ionic strengths at ionic strength fractions of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of HCl. Harned’s rule for the salt is obeyed at I=0.05,0.1 and 0.25 mol⋅kg−1 but the quadratic terms are needed for higher ionic strengths. These data, together with others for the activity coefficient of HCl in the same solutions, have been treated by the ion-interaction (Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, 1991) equations in a previous publication.
引用
收藏
页码:1669 / 1677
页数:8
相关论文
共 50 条
  • [1] Thermodynamics of the In¦In+3 electrode in HCl+InCl3 solutions
    Roy, Rabindra N.
    Roy, Lakshmi N.
    Gregory, Darin
    Kuhler, Kathleen
    Ashkenazi, Shahaf
    Kiefer, Stephanie
    Pitzer, Kenneth S.
    JOURNAL OF SOLUTION CHEMISTRY, 2007, 36 (11-12) : 1669 - 1677
  • [2] Thermodynamics of the System InCl3–HCl–H2O at 25° C
    K. S. Pitzer
    R. N. Roy
    P. Wang
    International Journal of Thermophysics, 1998, 19 : 731 - 738
  • [3] Thermodynamics on halide vapor-phase epitaxy of InN using InCl and InCl3
    Kumagai, Y
    Takemoto, K
    Koukitu, A
    Seki, H
    JOURNAL OF CRYSTAL GROWTH, 2001, 222 (1-2) : 118 - 124
  • [4] InCl3 in organic syntheses
    Ghosh, R
    INDIAN JOURNAL OF CHEMISTRY SECTION B-ORGANIC CHEMISTRY INCLUDING MEDICINAL CHEMISTRY, 2001, 40 (07): : 550 - 557
  • [5] EVIDENCE ON LIGAND STRENGTHS FROM THE CRYSTAL-STRUCTURES OF [INCL3(DMF)3], [INCL3(DMA)3], [(INCL3(PHCHO)3)2].PHCHO AND [INCL3(PHCOME)2] FROM DIMETHYLFORMAMIDE (DMF), DIMETHYLACETAMIDE (DMA), BENZALDEHYDE AND ACETOPHENONE
    JIN, SC
    MCKEE, V
    NIEUWENHUYZEN, M
    ROBINSON, WT
    WILKINS, CJ
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1993, (20): : 3111 - 3116
  • [6] ADDUCTS OF INCL3, WITH LEWIS-BASES - CRYSTAL AND MOLECULAR-STRUCTURE OF [(INCL3)(2)(DME)(3)]
    CARTA, G
    BENETOLLO, F
    SITRAN, S
    ROSSETTO, G
    BRAGA, F
    ZANELLA, P
    POLYHEDRON, 1995, 14 (13-14) : 1923 - 1928
  • [7] RAMAN-STUDY OF INCL3
    MATHUR, MS
    HO, JHK
    TABISZ, GC
    SPECTROSCOPY LETTERS, 1981, 14 (06) : 395 - 404
  • [8] Triamminetrichloroindium(III), [InCl3(NH3)3]
    Bremm, S
    Meyer, G
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2003, 59 : I110 - I111
  • [9] SATURATION PRESSURE OF GACL3 AND INCL3
    OPPERMANN, H
    KRAUSZE, R
    BRUHN, U
    BALARIN, M
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1994, 620 (06): : 1110 - 1114
  • [10] A torsion study on the sublimation process of InCl3
    Brunetti, B
    Piacente, V
    Scardala, P
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1998, 43 (01): : 101 - 104