We consider four dimensional U(N) N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM theory interacting with a 3d N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathcal{N} $$\end{document} = 4 theory living on a codimension-one interface and holographically dual to the D3-D5 system without flux. Localization captures several observables in this dCFT, including its free energy, related to the defect expectation value, and single trace 12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \frac{1}{2} $$\end{document}-BPS composite scalars. These quantities may be computed in a hermitian one-matrix model with non-polynomial single-trace potential. We exploit the integrable Volterra hierarchy underlying the matrix model and systematically study its 1/N expansion at any value of the ’t Hooft coupling. In particular, the strong coupling regime is determined — up to non-perturbative exponentially suppressed corrections — by differential relations that constrain higher order terms in the 1/N expansion. The analysis is extended to the model with SU(N) gauge symmetry by resorting to the more general Toda lattice equations.