On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes

被引:0
|
作者
Claude M. Warnick
机构
[1] 4-181 CCIS,Department of Physics
[2] University of Alberta,Mathematics Institute, Zeeman Building
[3] University of Warwick,undefined
来源
关键词
Black Hole; Quasinormal Mode; Stationary Black Hole; Quasinormal Frequency; Hyperbolic Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of quasinormal modes (QNM) for strongly hyperbolic systems on stationary, asymptotically anti-de Sitter black holes, with very general boundary conditions at infinity. We argue that for a time slicing regular at the horizon the QNM should be identified with certain Hk eigenvalues of the infinitesimal generator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of the solution semigroup. Using this definition we are able to prove directly that the quasinormal frequencies form a discrete, countable subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} which in the globally stationary case accumulates only at infinity. We avoid any need for meromorphic extension, and the quasinormal modes are honest eigenfunctions of an operator on a Hilbert space. Our results apply to any of the linear fields usually considered (Klein- Gordon, Maxwell, Dirac, etc.) on a stationary black hole background, and do not rely on any separability or analyticity properties of the metric. Our methods and results largely extend to the locally stationary case. We provide a counter-example to the conjecture that quasinormal modes are complete. We relate our approach directly to the approach via meromorphic continuation.
引用
收藏
页码:959 / 1035
页数:76
相关论文
共 50 条
  • [21] Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes
    Ma, Hong
    Li, Jin
    [J]. CHINESE PHYSICS C, 2018, 42 (04)
  • [22] Calculating quasinormal modes of Schwarzschild anti-de Sitter black holes using the continued fraction method
    Daghigh, Ramin G.
    Green, Michael D.
    Morey, Jodin C.
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [23] Quasinormal modes of plane-symmetric anti-de Sitter black holes: A complete analysis of the gravitational perturbations
    Miranda, AS
    Zanchin, VT
    [J]. PHYSICAL REVIEW D, 2006, 73 (06):
  • [24] A matrix method for quasinormal modes: Schwarzschild black holes in asymptotically flat and (anti-) de Sitter spacetimes
    Lin, Kai
    Qian, Wei-Liang
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (09)
  • [25] Mechanics of higher dimensional black holes in asymptotically anti-de Sitter spacetimes
    Ashtekar, Abhay
    Pawlowski, Tomasz
    Van den Broeck, Chris
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) : 625 - 644
  • [26] Gravitating sphalerons and sphaleron black holes in asymptotically anti-de Sitter spacetime
    van der Bij, JJ
    Radu, E
    [J]. PHYSICAL REVIEW D, 2001, 64 (06)
  • [27] Quasinormal modes and isospectrality of Bardeen (Anti-) de Sitter black holes
    Zhao, Ying
    Liu, Wentao
    Zhang, Chao
    Fang, Xiongjun
    Jing, Jiliang
    [J]. CHINESE PHYSICS C, 2024, 48 (03)
  • [28] Quasinormal modes and isospectrality of Bardeen(Anti-) de Sitter black holes
    赵莹
    刘文韬
    张超
    房熊俊
    荆继良
    [J]. Chinese Physics C, 2024, 48 (03) : 195 - 206
  • [29] Eternal black holes in anti-de Sitter
    Maldacena, J
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04):
  • [30] Anti-de Sitter space and black holes
    Banados, M
    Gomberoff, A
    Martinez, C
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (11) : 3575 - 3598