On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes

被引:0
|
作者
Claude M. Warnick
机构
[1] 4-181 CCIS,Department of Physics
[2] University of Alberta,Mathematics Institute, Zeeman Building
[3] University of Warwick,undefined
来源
关键词
Black Hole; Quasinormal Mode; Stationary Black Hole; Quasinormal Frequency; Hyperbolic Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of quasinormal modes (QNM) for strongly hyperbolic systems on stationary, asymptotically anti-de Sitter black holes, with very general boundary conditions at infinity. We argue that for a time slicing regular at the horizon the QNM should be identified with certain Hk eigenvalues of the infinitesimal generator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} of the solution semigroup. Using this definition we are able to prove directly that the quasinormal frequencies form a discrete, countable subset of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} which in the globally stationary case accumulates only at infinity. We avoid any need for meromorphic extension, and the quasinormal modes are honest eigenfunctions of an operator on a Hilbert space. Our results apply to any of the linear fields usually considered (Klein- Gordon, Maxwell, Dirac, etc.) on a stationary black hole background, and do not rely on any separability or analyticity properties of the metric. Our methods and results largely extend to the locally stationary case. We provide a counter-example to the conjecture that quasinormal modes are complete. We relate our approach directly to the approach via meromorphic continuation.
引用
收藏
页码:959 / 1035
页数:76
相关论文
共 50 条
  • [1] On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes
    Warnick, Claude M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) : 959 - 1035
  • [2] Gravitational quasinormal modes for anti-de Sitter black holes
    Moss, IG
    Norman, JP
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) : 2323 - 2332
  • [3] Gravitational quasinormal modes for Kerr anti-de Sitter black holes
    Giammatteo, M
    Moss, IG
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (09) : 1803 - 1824
  • [4] Expanding plasmas and quasinormal modes of anti-de Sitter black holes
    Friess, Joshua J.
    Gubser, Steven S.
    Michalogiorgakis, Georgios
    Pufu, Silviu S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (04):
  • [5] Quasinormal frequencies of asymptotically anti-de Sitter black holes in two dimensions
    R. Cordero
    A. López-Ortega
    I. Vega-Acevedo
    [J]. General Relativity and Gravitation, 2012, 44 : 917 - 940
  • [6] Bifurcation of the Maxwell quasinormal spectrum on asymptotically anti-de Sitter black holes
    Wang, Mengjie
    Chen, Zhou
    Tong, Xin
    Pan, Qiyuan
    Jing, Jiliang
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)
  • [7] Quasinormal frequencies of asymptotically anti-de Sitter black holes in two dimensions
    Cordero, R.
    Lopez-Ortega, A.
    Vega-Acevedo, I.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (04) : 917 - 940
  • [8] Quasinormal modes of Reissner-Nordstrom Anti-de Sitter black holes
    Wang, B
    Lin, CY
    Abdalla, E
    [J]. PHYSICS LETTERS B, 2000, 481 (01) : 79 - 88
  • [9] Geometrothermodynamics of asymptotically Anti-de Sitter black holes
    Quevedo, Hernando
    Sanchez, Alberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09):
  • [10] Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes
    Berti, Emanuele
    Cardoso, Vitor
    Pani, Paolo
    [J]. PHYSICAL REVIEW D, 2009, 79 (10):