A block Newton method for nonlinear eigenvalue problems

被引:0
|
作者
Daniel Kressner
机构
[1] Seminar für Angewandte Mathematik,
来源
Numerische Mathematik | 2009年 / 114卷
关键词
Primary 65F15; Secondary 15A18; 47A56;
D O I
暂无
中图分类号
学科分类号
摘要
We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences from the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue problem, either simultaneously or subsequently. The purpose of this work is to show that the concept of invariant pairs offers a way of representing eigenvalues and eigenvectors that is insensitive to this phenomenon. To demonstrate the use of this concept in the development of numerical methods, we have developed a novel block Newton method for computing such invariant pairs. Algorithmic aspects of this method are considered and a few academic examples demonstrate its viability.
引用
收藏
页码:355 / 372
页数:17
相关论文
共 50 条
  • [31] ITERATION METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS
    DEMOULIN, YMJ
    CHEN, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) : 588 - 595
  • [32] A new method for the study of nonlinear eigenvalue problems
    Ricceri, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03): : 251 - 256
  • [33] A full multigrid method for nonlinear eigenvalue problems
    JIA ShangHui
    XIE HeHu
    XIE ManTing
    XU Fei
    Science China(Mathematics), 2016, 59 (10) : 2037 - 2048
  • [34] A Smoothing Newton method for Nonlinear Complementarity Problems
    Feng, Ning
    Tian, Zhi-yuan
    Qu, Xin-lei
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1090 - 1093
  • [35] NEWTON STOCHASTIC METHOD IN NONLINEAR EXTREMAL PROBLEMS
    PROPOI, AI
    PUKHLIKOV, AV
    AUTOMATION AND REMOTE CONTROL, 1993, 54 (04) : 605 - 613
  • [36] A smoothing Newton method for nonlinear complementarity problems
    Tang, Jingyong
    Dong, Li
    Zhou, Jinchuan
    Fang, Liang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (01): : 107 - 118
  • [37] Application of efficient algorithm based on block Newton method to elastoplastic problems with nonlinear kinematic hardening
    Yamamoto, Takeki
    Yamada, Takahiro
    Matsui, Kazumi
    ENGINEERING COMPUTATIONS, 2024, 41 (06) : 1484 - 1506
  • [38] A Newton-type method for two-dimensional eigenvalue problems
    Lu, Tianyi
    Su, Yangfeng
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)
  • [39] A geometric Gauss–Newton method for least squares inverse eigenvalue problems
    Teng-Teng Yao
    Zheng-Jian Bai
    Xiao-Qing Jin
    Zhi Zhao
    BIT Numerical Mathematics, 2020, 60 : 825 - 852
  • [40] On the convergence rate of a quasi-Newton method for inverse eigenvalue problems
    Chan, RH
    Xu, SF
    Zhou, HM
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) : 436 - 441