Fifth-order dispersive equations arise in the context of higher-order models for phenomena such as water waves. For fifth-order variable-coefficient linear dispersive equations, we provide conditions under which the intitial value problem is either well-posed or ill-posed. For well-posedness, a balance must be struck between the leading-order dispersion and possible backwards diffusion from the fourth-derivative term. This generalizes work by the first author and Wright for third-order equations. In addition to inherent interest in fifth-order dispersive equations, this work is also motivated by a question from numerical analysis: finite difference schemes for third-order numerical equations can yield approximate solutions which effectively satisfy fifth-order equations. We find that such a fifth-order equation is well-posed if and only if the underlying third-order equation is ill-posed.
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
Li Yongsheng
Yang Xingyu
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaS China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Yan, Wei
Li, Yongsheng
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Li, Yongsheng
Li, Shiming
论文数: 0引用数: 0
h-index: 0
机构:
S China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
机构:
Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea