Minimum Cycle Bases for Network Graphs

被引:0
|
作者
Franziska Berger
Peter Gritzmann
Sven de Vries
机构
[1] Zentrum Mathematik,
[2] Technische Universität München,undefined
[3] Boltzmannstraße 3,undefined
[4] D-85747 Garching bei München,undefined
来源
Algorithmica | 2004年 / 40卷
关键词
Graph cycle; Minimum cycle basis; Matroid; Electrical network;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum cycle basis problem in a graph G = (V,E) is the task to construct a minimum length basis of its cycle vector space. A well-known algorithm by Horton of 1987 needs running time O(|V||E|2.376). We present a new combinatorial approach which generates minimum cycle bases in time O(\max{|E|3,|E||V|2log |V|}) with a space requirement of Θ(|E|2). This method is especially suitable for large sparse graphs of electric engineering applications since there, typically, |E| is close to linear in |V|.
引用
收藏
页码:51 / 62
页数:11
相关论文
共 50 条
  • [31] Cycle bases of graphs and applications in structural mechanics
    [J]. Iranian Journal of Science & Technology, 1998, 22 (03): : 365 - 378
  • [32] Properties of minimum ILFI graphs with Hamiltonian cycle
    Shiizuka, Hisao
    Tsukiyama, Shuji
    Shirakawa, Isao
    [J]. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1991, 74 (01): : 1 - 10
  • [33] Cycle-saturated graphs of minimum size
    Barefoot, CA
    Clark, LH
    Entringer, RC
    Porter, TD
    Szekely, LA
    Tuza, Z
    [J]. DISCRETE MATHEMATICS, 1996, 150 (1-3) : 31 - 48
  • [34] Cycle lengths in graphs with large minimum degree
    Nikiforov, V
    Schelp, RH
    [J]. JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 157 - 170
  • [35] A faster algorithm for minimum cycle basis of graphs
    Kavitha, T
    Mehlhorn, K
    Michail, D
    Paluch, K
    [J]. AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 846 - 857
  • [36] On minimum cycle bases of the wreath product of wheels with stars
    Jaradat, M.M.M.
    Al-Qeyyam, M.K.
    [J]. World Academy of Science, Engineering and Technology, 2010, 41 : 673 - 677
  • [37] Minimum Weakly Fundamental Cycle Bases Are Hard To Find
    Romeo Rizzi
    [J]. Algorithmica, 2009, 53 : 402 - 424
  • [38] Minimum Weakly Fundamental Cycle Bases Are Hard To Find
    Rizzi, Romeo
    [J]. ALGORITHMICA, 2009, 53 (03) : 402 - 424
  • [39] Cycle bases in graphs characterization, algorithms, complexity, and applications
    Kavitha, Telikepalli
    Liebchen, Christian
    Mehlhorn, Kurt
    Michail, Dimitrios
    Rizzi, Romeo
    Ueckerdt, Torsten
    Zwei, Katharina A.
    [J]. COMPUTER SCIENCE REVIEW, 2009, 3 (04) : 199 - 243
  • [40] ON OPTIMAL CYCLE BASES OF GRAPHS FOR MESH ANALYSIS OF NETWORKS
    KAVEH, A
    [J]. NETWORKS, 1989, 19 (03) : 273 - 279