Minimum Cycle Bases for Network Graphs

被引:0
|
作者
Franziska Berger
Peter Gritzmann
Sven de Vries
机构
[1] Zentrum Mathematik,
[2] Technische Universität München,undefined
[3] Boltzmannstraße 3,undefined
[4] D-85747 Garching bei München,undefined
来源
Algorithmica | 2004年 / 40卷
关键词
Graph cycle; Minimum cycle basis; Matroid; Electrical network;
D O I
暂无
中图分类号
学科分类号
摘要
The minimum cycle basis problem in a graph G = (V,E) is the task to construct a minimum length basis of its cycle vector space. A well-known algorithm by Horton of 1987 needs running time O(|V||E|2.376). We present a new combinatorial approach which generates minimum cycle bases in time O(\max{|E|3,|E||V|2log |V|}) with a space requirement of Θ(|E|2). This method is especially suitable for large sparse graphs of electric engineering applications since there, typically, |E| is close to linear in |V|.
引用
收藏
页码:51 / 62
页数:11
相关论文
共 50 条
  • [1] Minimum cycle bases for network graphs
    Berger, F
    Gritzmann, P
    de Vries, S
    [J]. ALGORITHMICA, 2004, 40 (01) : 51 - 62
  • [2] Minimum cycle bases of graphs on surfaces
    Ren, Han
    Deng, Mo
    [J]. DISCRETE MATHEMATICS, 2007, 307 (22) : 2654 - 2660
  • [3] Minimum cycle bases of Halin graphs
    Stadler, PF
    [J]. JOURNAL OF GRAPH THEORY, 2003, 43 (02) : 150 - 155
  • [4] Minimum cycle bases of weighted outerplanar graphs
    Liu, Tsung-Hao
    Lu, Hsueh-I
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (21) : 970 - 974
  • [5] Minimum cycle bases in graphs algorithms and applications
    Mehlhorn, Kurt
    [J]. Mathematical Foundations of Computer Science 2007, Proceedings, 2007, 4708 : 13 - 14
  • [6] Minimum Cycle Bases of Weighted Outerplanar Graphs
    Liu, Tsung-Hao
    Lu, Hsueh-I
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 564 - 572
  • [7] New Approximation Algorithms for Minimum Cycle Bases of Graphs
    Telikepalli Kavitha
    Kurt Mehlhorn
    Dimitrios Michail
    [J]. Algorithmica, 2011, 59 : 471 - 488
  • [8] Minimum cycle bases of direct products of bipartite graphs
    Hammack, Richard
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 36 : 213 - 221
  • [9] Minimum cycle bases of direct products of complete graphs
    Hammack, Richard
    [J]. INFORMATION PROCESSING LETTERS, 2007, 102 (05) : 214 - 218
  • [10] New approximation algorithms for minimum cycle bases of graphs
    Kavitha, Telikepalli
    Mehlhorn, Kurt
    Michail, Dimitrios
    [J]. STACS 2007, PROCEEDINGS, 2007, 4393 : 512 - +