Production of Nickel by Cold Hydrogen Plasma

被引:0
|
作者
Kali Charan Sabat
机构
[1] Maulana Azad National Institute of Technology,Department of Materials and Metallurgical Engineering
来源
关键词
Production of nickel; Thermodynamics; Kinetics; Cold hydrogen plasma; Excess oxygen;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, a new production process of various metals and alloys from their oxides and ores by Cold Hydrogen Plasma (CHP) has been introduced. CHP is produced by using a microwave oven, using less power than the microwave ovens used domestically for cooking food. CHP is very efficient in producing metals and alloys from their oxides because of excited species. These excited species decrease the thermodynamic and kinetic barriers of reduction, making the reduction easier and faster. In the current investigation, nickel has been produced from nickel oxide (NiO) pellets of ~ 2.5 gm to ~ 7.5 gm. The hydrogen flow rate ranges from 70 ml/s to 150 ml/s, and power varies from 600 to 750 W. The time taken for reduction changed between 300 to 1200 s. CHP reduces very fast due to the active oxygen present in it. This faster production of nickel from pellets upto ~ 7.5 gm at such low power opens up the possibilities of upscaling the reduction of NiO by CHP.
引用
收藏
页码:1329 / 1345
页数:16
相关论文
共 50 条
  • [41] RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate
    Bai, Liuyang
    Fan, Junmei
    Hu, Peng
    Yuan, Fangli
    Li, Jinlin
    Tang, Qing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 481 (1-2) : 563 - 567
  • [42] RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate
    Bai, Liuyang
    Fan, Junmei
    Hu, Peng
    Yuan, Fangli
    Li, Jinlin
    Tang, Qing
    Journal of Alloys and Compounds, 2009, 481 (1-2): : 563 - 567
  • [43] Atomic Layer Deposition of Nickel Carbide from a Nickel Amidinate Precursor and Hydrogen Plasma
    Guo, Qun
    Guo, Zheng
    Shi, Jianmin
    Xiong, Wei
    Zhang, Haibao
    Chen, Qiang
    Liu, Zhongwei
    Wang, Xinwei
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (09) : 8384 - 8390
  • [44] COLD-PLASMA WAVEBREAKING - PRODUCTION OF ENERGETIC ELECTRONS
    ALBRITTO.J
    KOCH, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (09): : 900 - 900
  • [45] Positron plasma control techniques for the production of cold antihydrogen
    Funakoshi, R.
    Amoretti, M.
    Bonomi, G.
    Bowe, P. D.
    Canali, C.
    Carraro, C.
    Cesar, C. L.
    Charlton, M.
    Doser, M.
    Fontana, A.
    Fujiwara, M. C.
    Genova, P.
    Hangst, J. S.
    Hayano, R. S.
    Jorgensen, L. V.
    Kellerbauer, A.
    Lagomarsino, V.
    Landua, R.
    Rizzini, E. Lodi
    Macri, M.
    Madsen, N.
    Manuzio, G.
    Mitchard, D.
    Montagna, P.
    Posada, L. G. C.
    Rotondi, A.
    Testera, G.
    Variola, A.
    Venturelli, L.
    van der Werf, D. P.
    Yamazaki, Y.
    Zurlo, N.
    PHYSICAL REVIEW A, 2007, 76 (01):
  • [46] Nanoparticle production using atmospheric pressure cold plasma
    Vons, V.
    Creyghton, Y.
    Schmidt-Ott, A.
    JOURNAL OF NANOPARTICLE RESEARCH, 2006, 8 (05) : 721 - 728
  • [47] The Potential of Cold Plasma for Safe and Sustainable Food Production
    Bourke, Paula
    Ziuzina, Dana
    Boehm, Daniela
    Cullen, Patrick J.
    Keener, Kevin
    TRENDS IN BIOTECHNOLOGY, 2018, 36 (06) : 615 - 626
  • [48] COLD QUARK-GLUON PLASMA AND MULTIPARTICLE PRODUCTION
    VANHOVE, L
    ANNALS OF PHYSICS, 1989, 192 (01) : 66 - 76
  • [49] Fe Nanoparticle Production by an Atmospheric Cold Plasma Jet
    Zhang Yu-Tao
    Guo Ying
    Wang Da-Wang
    Feng Yan
    Ma Teng-Cai
    CHINESE PHYSICS LETTERS, 2010, 27 (06)
  • [50] Nanoparticle production using atmospheric pressure cold plasma
    V. Vons
    Y. Creyghton
    A. Schmidt-Ott
    Journal of Nanoparticle Research, 2006, 8 : 721 - 728