Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order

被引:0
|
作者
Toshio Fukushima
机构
[1] National Astronomical Observatory,
来源
Journal of Geodesy | 2017年 / 91卷
关键词
Coordinate rotation; Geomagnetism; Geopotential; Satellite orbit integration; Spherical harmonic expansion;
D O I
暂无
中图分类号
学科分类号
摘要
In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by 90∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$90^{\circ }$$\end{document} such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are 4π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \pi $$\end{document} fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271–285, 2012a). As an example, we obtained 2190×2190\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2190\times 2190$$\end{document} coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.
引用
收藏
页码:995 / 1011
页数:16
相关论文
共 50 条
  • [21] Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies
    Balmino, G.
    Vales, N.
    Bonvalot, S.
    Briais, A.
    [J]. JOURNAL OF GEODESY, 2012, 86 (07) : 499 - 520
  • [22] Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies
    G. Balmino
    N. Vales
    S. Bonvalot
    A. Briais
    [J]. Journal of Geodesy, 2012, 86 : 499 - 520
  • [23] Direct imaging of molecular rotation with high-order-harmonic generation
    He, Yanqing
    He, Lixin
    Lan, Pengfei
    Wang, Baoning
    Li, Liang
    Zhu, Xiaosong
    Cao, Wei
    Lu, Peixiang
    [J]. PHYSICAL REVIEW A, 2019, 99 (05)
  • [24] Spherical harmonic representation of rectangular domain sound fields
    Shi, Junjie
    Salvador, Cesar D.
    Trevino, Jorge
    Sakamoto, Shuichi
    Suzuki, Yoiti
    [J]. ACOUSTICAL SCIENCE AND TECHNOLOGY, 2020, 41 (01) : 451 - 453
  • [25] Approximating spherical harmonic representation order
    Ertürk, S
    Dennis, TJ
    [J]. ELECTRONICS LETTERS, 1999, 35 (06) : 462 - 463
  • [26] GENERALIZED SPHERICAL HARMONIC EXPANSION OF A SOLENOIDAL VECTOR
    MOCHIZUKI, E
    [J]. JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1988, 40 (08): : 1035 - 1042
  • [27] EXPANSION OF GEOID HEIGHTS INTO A SPHERICAL HARMONIC SERIES
    PEC, K
    MARTINEC, Z
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 1982, 26 (02) : 115 - 119
  • [28] SPHERICAL HARMONIC EXPANSION OF COSMIC HYDROMAGNETIC EQUATIONS
    MCDONALD, KL
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (11): : 1588 - &
  • [29] SPHERICAL HARMONIC EXPANSION OF VORTICITY TRANSPORT EQUATION
    MCDONALD, KL
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (05): : 817 - &
  • [30] Expansion of the force function for the mutual gravitation of two rigid bodies of arbitrary shape in a series of spherical harmonic functions
    Vidyakin, VV
    Popova, IG
    [J]. ASTRONOMY REPORTS, 1999, 43 (06) : 412 - 416