A Note on the Diamond Fractal

被引:0
|
作者
Volker Metz
机构
[1] Bielefeld University,Faculty of Mathematics
来源
Potential Analysis | 2004年 / 21卷
关键词
Laplace operator; diffusion; fractals;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the uniqueness of a “Laplacian” on the compact diamond fractal. More precisely, there exists a unique (up to positive multiples) self-similar, irreducible, local, regular and symmetric Dirichlet form with the normalized Hausdorff measure as reference measure. The main tool is the “eigenvalue test” which allows to use numerical results to set up theorems. The approach is of interest in its own because it also applies to other finitely ramified, graph-directed fractals.
引用
收藏
页码:35 / 46
页数:11
相关论文
共 50 条
  • [21] NOTE ON PLATELETS + DIFFRACTION SPIKES IN DIAMOND
    FRANK, FC
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1964, 84 (5415): : 745 - &
  • [22] Editorial note:: Diamond synthesis in doubt
    Gölitz, P
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (36) : 4687 - 4687
  • [23] A note on Katugampola fractional calculus and fractal dimensions
    Verma, S.
    Viswanathan, R.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 220 - 230
  • [24] Assessment of the surface morphology of diamond film based on fractal
    Lin, Jiangli
    Ran, Junguo
    Wang, Tianfu
    Gou, Li
    Hua, Yahui
    Liao, Xiaoming
    [J]. HIGH-PERFORMANCE CERAMICS IV, PTS 1-3, 2007, 336-338 : 2543 - +
  • [25] A note on the generalized fractal dimensions of a probability measure
    Guérin, CA
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (12) : 5871 - 5875
  • [26] A NOTE ON TOPOLOGY OF FRACTAL SQUARES WITH ORDER THREE
    Luo, Jun
    Yao, Xiao-Ting
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [27] A Note on Fractal Measures and Cartesian Product Sets
    Attia, Najmeddine
    Jebali, Hajer
    Khlifa, Meriem Ben Hadj
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4383 - 4404
  • [28] Perfect quantum state transfer on diamond fractal graphs
    Maxim Derevyagin
    Gerald V. Dunne
    Gamal Mograby
    Alexander Teplyaev
    [J]. Quantum Information Processing, 2020, 19
  • [29] Note on fractal interpolation function with variable parameters
    Attia, Najmeddine
    Moulahi, Taoufik
    Amami, Rim
    Saidi, Neji
    [J]. AIMS MATHEMATICS, 2024, 9 (02): : 2584 - 2601
  • [30] A NOTE ON THE FRACTAL NATURE OF THE CELLULOSE FIBER SURFACE
    JOHANSSON, A
    [J]. HOLZFORSCHUNG, 1993, 47 (04) : 287 - 290