Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements

被引:0
|
作者
Javier de Frutos
Bosco García-Archilla
Volker John
Julia Novo
机构
[1] Universidad de Valladolid,Instituto de Investigación en Matemáticas (IMUVA)
[2] Universidad de Sevilla,Departamento de Matemática Aplicada II
[3] Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS),Weierstrass Institute for Applied Analysis and Stochastics
[4] Freie Universität Berlin,Department of Mathematics and Computer Science
[5] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
关键词
Incompressible Navier–Stokes equations; Inf-sup stable finite element methods; Grad-div stabilization; Error bounds independent of the viscosity; Nonlocal compatibility condition; Backward Euler method; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies inf-sup stable finite element discretizations of the evolutionary Navier–Stokes equations with a grad-div type stabilization. The analysis covers both the case in which the solution is assumed to be smooth and consequently has to satisfy nonlocal compatibility conditions as well as the practically relevant situation in which the nonlocal compatibility conditions are not satisfied. The constants in the error bounds obtained do not depend on negative powers of the viscosity. Taking into account the loss of regularity suffered by the solution of the Navier–Stokes equations at the initial time in the absence of nonlocal compatibility conditions of the data, error bounds of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(h^{2})$\end{document} in space are proved. The analysis is optimal for quadratic/linear inf-sup stable pairs of finite elements. Both the continuous-in-time case and the fully discrete scheme with the backward Euler method as time integrator are analyzed.
引用
收藏
页码:195 / 225
页数:30
相关论文
共 50 条
  • [21] A Modular Grad-Div Stabilization Method for Time-Dependent Thermally Coupled MHD Equations
    Li, Xianzhu
    Su, Haiyan
    ENTROPY, 2022, 24 (10)
  • [22] NUMERICAL ANALYSIS OF MODULAR GRAD-DIV STABILITY METHODS FOR THE TIME-DEPENDENT NAVIER-STOKES/DARCY MODEL
    Wang, Jiangshan
    Meng, Lingxiong
    Jia, Hongen
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (03): : 1191 - 1205
  • [23] On reducing the splitting error in Yosida methods for the Navier-Stokes equations with grad-div stabilization
    Rebholz, Leo G.
    Xiao, Mengying
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 294 : 259 - 277
  • [24] Fully Discrete Approximations to the Time-dependent Navier-Stokes Equations with a Projection Method in Time and Grad-div Stabilization (vol 80, pg 1330, 2019)
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (02)
  • [25] Numerical Analysis of a BDF2 Modular Grad-Div Stabilization Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [26] A generalized scalar auxiliary variable approach for the Navier-Stokes-ω/Navier-Stokes-ω equations based on the grad-div stabilization
    Wang, Qinghui
    Huang, Pengzhan
    He, Yinnian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [27] INF-SUP STABILITY OF GEOMETRICALLY UNFITTED STOKES FINITE ELEMENTS
    Guzman, Johnny
    Olshanskii, Maxim
    MATHEMATICS OF COMPUTATION, 2018, 87 (313) : 2091 - 2112
  • [28] Modular Grad-Div Stabilization and Defect-Deferred Correction Method for the Navier-Stokes Equations
    Cai, Huiping
    Xue, Feng
    Xiao, Haiqiang
    He, Yang
    IAENG International Journal of Applied Mathematics, 2021, 51 (03): : 1 - 8
  • [29] Applying Local Projection Stabilization to inf-sup Stable Elements
    Rapin, G.
    Lube, G.
    Loewe, J.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 521 - 528
  • [30] Error analysis of proper orthogonal decomposition data assimilation schemes with grad-div stabilization for the Navier-Stokes equations
    Garcia-Archilla, Bosco
    Novo, Julia
    Rubino, Samuele
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411