Analysis of the grad-div stabilization for the time-dependent Navier–Stokes equations with inf-sup stable finite elements

被引:0
|
作者
Javier de Frutos
Bosco García-Archilla
Volker John
Julia Novo
机构
[1] Universidad de Valladolid,Instituto de Investigación en Matemáticas (IMUVA)
[2] Universidad de Sevilla,Departamento de Matemática Aplicada II
[3] Leibniz Institute in Forschungsverbund Berlin e. V. (WIAS),Weierstrass Institute for Applied Analysis and Stochastics
[4] Freie Universität Berlin,Department of Mathematics and Computer Science
[5] Universidad Autónoma de Madrid,Departamento de Matemáticas
来源
关键词
Incompressible Navier–Stokes equations; Inf-sup stable finite element methods; Grad-div stabilization; Error bounds independent of the viscosity; Nonlocal compatibility condition; Backward Euler method; 65M60; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies inf-sup stable finite element discretizations of the evolutionary Navier–Stokes equations with a grad-div type stabilization. The analysis covers both the case in which the solution is assumed to be smooth and consequently has to satisfy nonlocal compatibility conditions as well as the practically relevant situation in which the nonlocal compatibility conditions are not satisfied. The constants in the error bounds obtained do not depend on negative powers of the viscosity. Taking into account the loss of regularity suffered by the solution of the Navier–Stokes equations at the initial time in the absence of nonlocal compatibility conditions of the data, error bounds of order O(h2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal O(h^{2})$\end{document} in space are proved. The analysis is optimal for quadratic/linear inf-sup stable pairs of finite elements. Both the continuous-in-time case and the fully discrete scheme with the backward Euler method as time integrator are analyzed.
引用
收藏
页码:195 / 225
页数:30
相关论文
共 50 条
  • [1] Analysis of the grad-div stabilization for the time-dependent Navier-Stokes equations with inf-sup stable finite elements
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (01) : 195 - 225
  • [2] Grad-div stabilization for the time-dependent Boussinesq equations with inf-sup stable finite elements
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 281 - 291
  • [3] Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 991 - 1024
  • [4] Grad-div Stabilization for the Evolutionary Oseen Problem with Inf-sup Stable Finite Elements
    Javier de Frutos
    Bosco García-Archilla
    Volker John
    Julia Novo
    Journal of Scientific Computing, 2016, 66 : 991 - 1024
  • [5] Numerical analysis of projection methods for the time-dependent Navier-Stokes equations with modular grad-div stabilization
    Han, Wei-Wei
    Jiang, Yao-Lin
    Miao, Zhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 141 : 145 - 158
  • [6] Numerical analysis of CNLF modular Grad-Div stabilization method for time-dependent Navier-Stokes equations
    Jia, Xiaofeng
    Tang, Zhuyan
    Feng, Hui
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [7] Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization
    de Frutos, Javier
    Garcia-Archilla, Bosco
    John, Volker
    Novo, Julia
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1747 - 1786
  • [8] Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization
    Javier de Frutos
    Bosco García-Archilla
    Julia Novo
    Journal of Scientific Computing, 2019, 80 : 1330 - 1368
  • [9] Corrigenda: Fully Discrete Approximations to the Time-dependent Navier–Stokes Equations with a Projection Method in Time and Grad-div Stabilization
    Javier de Frutos
    Bosco García-Archilla
    Julia Novo
    Journal of Scientific Computing, 2021, 88
  • [10] Fully Discrete Approximations to the Time-Dependent Navier-Stokes Equations with a Projection Method in Time and Grad-Div Stabilization
    de Frutos, Javier
    Garcia-Archilla, Bosco
    Novo, Julia
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1330 - 1368