Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces

被引:0
|
作者
Rovshan A. Bandaliyev
Vagif S. Guliyev
Ilgar G. Mamedov
Yasin I. Rustamov
机构
[1] Institute of Mathematics and Mechanics of NAS of Azerbaijan,Department of Mathematics
[2] S.M. Nikolskii Institute of Mathematics at RUDN University,undefined
[3] Ahi Evran University,undefined
[4] Institute of Control Systems of NAS of Azerbaijan,undefined
来源
Journal of Optimization Theory and Applications | 2019年 / 180卷
关键词
3D optimal control; Pontryagin’s maximum principle; Bianchi equation; Goursat problem; Variable exponent Sobolev spaces; 37D30; 49B20; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin’s maximum principle for an optimal control problem with distributed parameters, is given by the third-order Bianchi equation with coefficients from variable exponent Lebesgue spaces. The statement of an optimal control problem is studied by using a new version of the increment method that essentially uses the concept of the adjoint equation of the integral form.
引用
收藏
页码:303 / 320
页数:17
相关论文
共 50 条
  • [41] A mass transportation approach for Sobolev inequalities in variable exponent spaces
    Pablo Borthagaray, Juan
    Fernandez Bonder, Julian
    Silva, Analia
    MANUSCRIPTA MATHEMATICA, 2016, 151 (1-2) : 133 - 146
  • [42] Boundary trace embedding theorems for variable exponent Sobolev spaces
    Fan, Xianling
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 1395 - 1412
  • [43] On the Sobolev embedding theorem for variable exponent spaces in the critical range
    Fernandez Bonder, Julian
    Saintier, Nicolas
    Silva, Analia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1604 - 1620
  • [44] Variable exponent Sobolev spaces and regularity of domains-II
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (03): : 695 - 711
  • [45] Geometry of Sobolev spaces with variable exponent: smoothness and uniform convexity
    Dinca, George
    Matei, Pavel
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) : 885 - 889
  • [46] COMPACT EMBEDDINGS ON A SUBSPACE OF WEIGHTED VARIABLE EXPONENT SOBOLEV SPACES
    Unal, Cihan
    Aydin, Ismail
    ADVANCES IN OPERATOR THEORY, 2019, 4 (02) : 388 - 405
  • [47] Sobolev embeddings for variable exponent Riesz potentials on metric spaces
    Futamura, Toshihide
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2006, 31 (02) : 495 - 522
  • [48] Asymptotic stability for Kirchhoff systems in variable exponent Sobolev spaces
    Autuori, G.
    Pucci, P.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (7-9) : 715 - 753
  • [49] The Dirichlet energy integral on intervals in variable exponent Sobolev spaces
    Harjulehto, P
    Hästö, P
    Koskenoja, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (04): : 911 - 923
  • [50] Characterisation of zero trace functions in variable exponent Sobolev spaces
    Edmunds, D. E.
    Nekvinda, Ales
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (14-15) : 2247 - 2258