Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces

被引:0
|
作者
Rovshan A. Bandaliyev
Vagif S. Guliyev
Ilgar G. Mamedov
Yasin I. Rustamov
机构
[1] Institute of Mathematics and Mechanics of NAS of Azerbaijan,Department of Mathematics
[2] S.M. Nikolskii Institute of Mathematics at RUDN University,undefined
[3] Ahi Evran University,undefined
[4] Institute of Control Systems of NAS of Azerbaijan,undefined
关键词
3D optimal control; Pontryagin’s maximum principle; Bianchi equation; Goursat problem; Variable exponent Sobolev spaces; 37D30; 49B20; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a necessary and sufficient condition, such as the Pontryagin’s maximum principle for an optimal control problem with distributed parameters, is given by the third-order Bianchi equation with coefficients from variable exponent Lebesgue spaces. The statement of an optimal control problem is studied by using a new version of the increment method that essentially uses the concept of the adjoint equation of the integral form.
引用
收藏
页码:303 / 320
页数:17
相关论文
共 50 条
  • [1] Optimal Control Problem for Bianchi Equation in Variable Exponent Sobolev Spaces
    Bandaliyev, Rovshan A.
    Guliyev, Vagif S.
    Mamedov, Ilgar G.
    Rustamov, Yasin I.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (01) : 303 - 320
  • [2] The optimal control problem in the processes described by the Goursat problem for a hyperbolic equation in variable exponent Sobolev spaces with dominating mixed derivatives
    Bandaliyev, R. A.
    Guliyev, V. S.
    Mamedov, I. G.
    Sadigov, A. B.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 305 : 11 - 17
  • [3] ON A NONLINEAR EIGENVALUE PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Dinu, T-L
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2005, 2 : 208 - 217
  • [4] ON A NONHOMOGENOUS QUASILINEAR PROBLEM IN SOBOLEV SPACES WITH VARIABLE EXPONENT
    Ben Ali, Khaled
    Bezzarga, Mounir
    POTENTIAL THEORY AND STOCHASTICS IN ALBAC: AUREL CORNEA MEMORIAL VOLUME, CONFERENCE PROCEEDINGS, 2009, : 21 - +
  • [5] On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent
    Mihailescu, Mihai
    Radulescu, Vicentiu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2929 - 2937
  • [6] Variable Exponent p(middot)-Kirchhoff Type Problem with Convection in Variable Exponent Sobolev Spaces
    El Hammar, Hasnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19
  • [7] ON A CLASS OF NONHOMOGENOUS QUASILINEAR PROBLEM INVOLVING SOBOLEV SPACES WITH VARIABLE EXPONENT
    Souayah, Asma Karoui
    Kefi, Khaled
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2010, 18 (01): : 309 - 328
  • [8] VARIABLE EXPONENT SOBOLEV SPACES ON METRIC MEASURE SPACES
    Harjuletho, Petteri
    Hasto, Peter
    Pere, Mikko
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2006, 36 (01) : 79 - 94
  • [9] Holder quasicontinuity in variable exponent Sobolev spaces
    Harjulehto, Petteri
    Kinnunen, Juha
    Tuhkanen, Katja
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [10] Uniform Convexity in Variable Exponent Sobolev Spaces
    Bachar, Mostafa
    Khamsi, Mohamed A.
    Mendez, Osvaldo
    SYMMETRY-BASEL, 2023, 15 (11):