(g,f)-factorizations of graphs orthogonal to [1,2]-subgraph

被引:0
|
作者
Yan G. [1 ]
机构
[1] Institute of Applied Mathematics, Chinese Academy of Sciences
基金
中国博士后科学基金;
关键词
Factorization; Graph; Orthogonasl;
D O I
10.1007/BF02009545
中图分类号
学科分类号
摘要
Let G be a simple graph. Let g(x) and f(x) be integer-valued functions defined on V(G) with f(x)≥g(x)≥1 for all x∈V(G). It is proved that if G is an (mg+m-1,mf-m+1)-graph and H is a [1,2]-subgraph with m edges, then there exists a (g,f)-factorization of G orthogonal to H.
引用
收藏
页码:371 / 375
页数:4
相关论文
共 50 条
  • [21] Orthogonal factorizations of graphs
    Feng, HD
    Liu, GZ
    JOURNAL OF GRAPH THEORY, 2002, 40 (04) : 267 - 276
  • [22] Orthogonal factorizations of graphs
    Li, GJ
    Chen, CP
    Yu, G
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 173 - 194
  • [23] [0, ki]1m-Factorizations Orthogonal to a Subgraph
    Run-nian Ma
    Jin Xu
    Hang-shan Gao
    Applied Mathematics and Mechanics, 2001, 22 : 593 - 596
  • [24] [0,ki]1~m-FACTORIZATIONS ORTHOGONAL TO A SUBGRAPH
    马润年
    许进
    高行山
    Applied Mathematics and Mechanics(English Edition), 2001, (05) : 593 - 596
  • [25] [0, ki]1m-factorizations orthogonal to a subgraph
    Ma, RN
    Xu, J
    Gao, HS
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (05) : 593 - 596
  • [26] [O,ki]1/m-factorizations orthogonal to a subgraph
    MA Run-nian
    Xu Jin
    Gao Hang-shan
    Applied Mathematics and Mechanics, 2001, 22 (5) : 593 - 596
  • [27] Existence of subgraph with orthogonal (g,f)-factorization
    Yan, GY
    Pan, JF
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (01): : 48 - 54
  • [28] Existence of subgraph with orthogonal (g,f)-factorization
    Yan Guiying
    Pan Jiaofeng
    Science in China Series A: Mathematics, 1998, 41 (1): : 48 - 54
  • [29] Existence of subgraph with orthogonal (g,f)-factorization
    闫桂英
    潘教峰
    Science China Mathematics, 1998, (01) : 48 - 54
  • [30] A Generalization of Orthogonal Factorizations in Graphs
    Guo Jun Li
    Gui Zhen Liu
    Acta Mathematica Sinica, 2001, 17 : 669 - 678