Improved estimation of the generalized precision under the entropy loss

被引:0
|
作者
Sun Xiaoqian
Pang Wankai
机构
[1] East China Normal University,Department of Statistics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
[3] Huaiyin Teachers’ College,Department of Mathematics
关键词
Best affine equivariant estimator; generalized precision; inadmissibility; entropy loss;
D O I
10.1007/BF02677676
中图分类号
学科分类号
摘要
LetX1, …,Xn be a random sample from multivariate normal distributionNp(μ,Φ), where μεRp and Φ is a positive definite matrix, both μ and Φ being unknown. It is shown that for the entropy lossL(\Gd,\vb\bE\vb-1)= \Gd/\vb\bE\vb-1-log(\Gd/\vb\bE\vb-1)-1, the best affine equivariant estimator of the generalized precision \vb\bE\vb-1 is inadmissible and three classes of immproved estimators are given.
引用
收藏
页码:162 / 170
页数:8
相关论文
共 50 条
  • [31] Improving precision in earthquake loss estimation
    Chandra, Akhilesh
    Huang, Qindan
    Roke, David A.
    Sett, Kallol
    [J]. SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 2018, 3 (03) : 128 - 149
  • [32] Improved estimation of the Pareto location parameter under squared error loss
    Garren, Steven T.
    Hume, Elizabeth R.
    Leppert, Glen R.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (1-4) : 97 - 102
  • [34] IMPROVED ESTIMATION OF A MULTINORMAL PRECISION MATRIX
    DEY, DK
    [J]. STATISTICS & PROBABILITY LETTERS, 1987, 6 (02) : 125 - 128
  • [35] Generalized Dynamic Hysteresis Model for Improved Iron Loss Estimation of Complex Flux Waveforms
    Chang, Le
    Jahns, Thomas M.
    Blissenbach, Rolf
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (07)
  • [36] Estimation of generalized variance under an asymetric loss function "squared log error"
    Farsipour, NS
    Zakerzadeh, H
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (04) : 571 - 581
  • [37] Bayesian estimation and prediction for the generalized Lindley distribution under asymmetric loss function
    Singh, Sanjay Kumar
    Singh, Umesh
    Sharma, Vikas Kumar
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (04): : 661 - 678
  • [38] Generalized maximum entropy estimation of linear models
    Corral, Paul
    Kuehn, Daniel
    Jabir, Ermengarde
    [J]. STATA JOURNAL, 2017, 17 (01): : 240 - 249
  • [39] ENTROPY IN BIOLOGICAL BINDING PROCESSES - ESTIMATION OF TRANSLATIONAL ENTROPY LOSS
    MURPHY, KP
    XIE, D
    THOMPSON, KS
    AMZEL, LM
    FREIRE, E
    [J]. PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1994, 18 (01): : 63 - 67
  • [40] Maximum entropy distribution estimation with generalized regularization
    Dudik, Miroslav
    Schapire, Robert E.
    [J]. LEARNING THEORY, PROCEEDINGS, 2006, 4005 : 123 - 138