The euclidean distance degree of orthogonally invariant matrix varieties

被引:0
|
作者
Dmitriy Drusvyatskiy
Hon-Leung Lee
Giorgio Ottaviani
Rekha R. Thomas
机构
[1] University of Washington,Department of Mathematics
[2] Università di Firenze,DIMAI
[3] University of Washington,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Euclidean distance degree of a real variety is an important invariant arising in distance minimization problems. We show that the Euclidean distance degree of an orthogonally invariant matrix variety equals the Euclidean distance degree of its restriction to diagonal matrices. We illustrate how this result can greatly simplify calculations in concrete circumstances.
引用
收藏
页码:291 / 316
页数:25
相关论文
共 50 条
  • [21] Euclidean distance matrix completion problems
    Fang, Haw-ren
    O'Leary, Dianne P.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5): : 695 - 717
  • [22] The cell matrix closest to a given Euclidean distance matrix
    Kurata, Hiroshi
    Tarazaga, Pablo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 : 194 - 207
  • [23] Improved Distance Degree Invariant of Graphs
    Balasangu, K.
    Parameswari, S.
    RECENT TRENDS IN PURE AND APPLIED MATHEMATICS, 2019, 2177
  • [24] A Euclidean Distance Matrix Model for Convex Clustering
    Wang, Z. W.
    Liu, X. W.
    Li, Q. N.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2025, 205 (01)
  • [25] Concurrent normals problem for convex polytopes and Euclidean distance degree
    Nasonov, I.
    Panina, G.
    Siersma, D.
    ACTA MATHEMATICA HUNGARICA, 2024, : 522 - 538
  • [26] A Euclidean distance matrix model for protein molecular conformation
    Zhai, Fengzhen
    Li, Qingna
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (04) : 709 - 728
  • [27] Moore-Penrose inverse of a Euclidean distance matrix
    Kurata, Hiroshi
    Bapat, Ravindra B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 472 : 106 - 117
  • [28] CHANNEL CHARTING: AN EUCLIDEAN DISTANCE MATRIX COMPLETION PERSPECTIVE
    Agostini, Patrick
    Utkovski, Zoran
    Stanczak, Slawomir
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5010 - 5014
  • [29] Analyzing the Realization of Degree Sequence by Constructing Orthogonally Diagonalizable Adjacency Matrix
    Biswas, Prantik
    Paul, Abhisek
    Bhattacharya, Paritosh
    3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 : 885 - 889
  • [30] ROBUST SENSOR LOCALIZATION BASED ON EUCLIDEAN DISTANCE MATRIX
    Liu, Dehong
    Mansour, Hassan
    Boufounos, Petros T.
    Kamilov, Ulugbek S.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7998 - 8001