Asymptotic analysis of a multimaterial with a thin piezoelectric interphase

被引:0
|
作者
Michele Serpilli
机构
[1] Università Politecnica delle Marche,Department of Civil and Building Construction Engineering, and Architecture
来源
Meccanica | 2014年 / 49卷
关键词
Asymptotic analysis; Piezoelectric interphase; Plate models; 74K20; 74K30; 74K35; 74F15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the electromechanical behavior of a multimaterial constituted by a linear piezoelectric transversely isotropic plate-like body with high rigidity embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic expansion method. After defining a small real dimensionless parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}, which will tend to zero, we characterize the limit model and the associated limit problem. We give also a mathematical justification of the model by means of a functional convergence argument. Moreover, we identify the non classical electromechanical transmission conditions between the two three-dimensional bodies.
引用
收藏
页码:1641 / 1652
页数:11
相关论文
共 50 条
  • [41] Analysis of a piezoelectric screw dislocation in the interphase layer between a circular inclusion and an unbounded matrix
    Liu, YW
    Fang, QH
    Jiang, CP
    MATERIALS CHEMISTRY AND PHYSICS, 2006, 98 (01) : 14 - 26
  • [42] Asymptotic dynamic response of thin linearly piezoelectric plates in the quasi-electrostatic approximation.
    Weller, T
    Licht, C
    COMPTES RENDUS MECANIQUE, 2004, 332 (07): : 519 - 524
  • [43] Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method
    Zhirui Fan
    Jun Yan
    Mathias Wallin
    Matti Ristinmaa
    Bin Niu
    Guozhong Zhao
    Structural and Multidisciplinary Optimization, 2020, 61 : 983 - 998
  • [44] ASYMPTOTIC ANALYSIS IN ELASTICITY PROBLEMS ON THIN PERIODIC STRUCTURES
    Pastukhova, S. E.
    NETWORKS AND HETEROGENEOUS MEDIA, 2009, 4 (03) : 577 - 604
  • [45] GAMMA-CONVERGENCE AND ASYMPTOTIC ANALYSIS OF THIN PLATES
    BOURQUIN, F
    CIARLET, PG
    GEYMONAT, G
    RAOULT, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (09): : 1017 - 1024
  • [46] ASYMPTOTIC ANALYSIS FOR A DIFFUSION PROBLEM IN THIN FILTERING MATERIALS
    Bunoiu, R.
    Timofte, C.
    ROMANIAN REPORTS IN PHYSICS, 2022, 74 (01)
  • [47] Simulations of faceted polycrystalline thin films: Asymptotic analysis
    Ophus, Colin
    Luber, Erik
    Mitlin, David
    ACTA MATERIALIA, 2009, 57 (05) : 1327 - 1336
  • [48] Multiscale eigenfrequency optimization of multimaterial lattice structures based on the asymptotic homogenization method
    Fan, Zhirui
    Yan, Jun
    Wallin, Mathias
    Ristinmaa, Matti
    Niu, Bin
    Zhao, Guozhong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (03) : 983 - 998
  • [49] Asymptotic analysis of a double porosity model with thin fissures
    Pankratov, LS
    Rybalko, VA
    SBORNIK MATHEMATICS, 2003, 194 (1-2) : 123 - 150
  • [50] An asymptotic analysis of small holes in thin fluid layers
    Wilson, SK
    Duffy, BR
    JOURNAL OF ENGINEERING MATHEMATICS, 1996, 30 (04) : 445 - 457