On an interval (1, 1)-coloring of incidentors of interval colorable graphs

被引:0
|
作者
Pyatkin A.V. [1 ,2 ]
机构
[1] Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 2, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
incidentor; interval coloring; subdivision of a graph;
D O I
10.1134/S199047891502012X
中图分类号
学科分类号
摘要
A graph is called interval colorable if there exists its proper edge coloring such that for every vertex the set of colors used for coloring the edges incident with the vertex forms an interval. A subdivision of a graph is a graph obtained by replacing each edge with a path of length 2. Petrosyan and Khachatryan posed a conjecture that the subdivision of every interval colorable graph is interval colorable. In this paper we prove this conjecture. © 2015, Pleiades Publishing, Ltd.
引用
收藏
页码:271 / 274
页数:3
相关论文
共 50 条
  • [1] On interval Δ-coloring of bipartite graphs
    A. M. Magomedov
    Automation and Remote Control, 2015, 76 : 80 - 87
  • [2] On interval Δ-coloring of bipartite graphs
    Magomedov, A. M.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (01) : 80 - 87
  • [3] Approximate L(δ1, δ2,..., δt)-coloring of trees and interval graphs
    Bertossi, Alan A.
    Pinotti, Cristina M.
    NETWORKS, 2007, 49 (03) : 204 - 216
  • [4] On (1,l)-coloring of incidentors of multigraphs
    Golovachev M.O.
    Pyatkin A.V.
    Journal of Applied and Industrial Mathematics, 2017, 11 (4) : 514 - 520
  • [5] INTERVAL INCIDENCE COLORING OF SUBCUBIC GRAPHS
    Malafiejska, Anna
    malafiejski, Michal
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 427 - 441
  • [6] Distributed Algorithms for Coloring Interval Graphs
    Halldorsson, Magnus M.
    Konrad, Christian
    DISTRIBUTED COMPUTING (DISC 2014), 2014, 8784 : 454 - 468
  • [7] Interval incidence coloring of bipartite graphs
    Janczewski, Robert
    Malafiejska, Anna
    Malafiejski, Michal
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 131 - 140
  • [8] On the Sum Coloring Problem on Interval Graphs
    S. Nicoloso
    M. Sarrafzadeh
    X. Song
    Algorithmica, 1999, 23 : 109 - 126
  • [9] Coloring fuzzy circular interval graphs
    Eisenbrand, Friedrich
    Niemeier, Martin
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 893 - 904
  • [10] Coloring Mixed and Directional Interval Graphs
    Gutowski, Grzegorz
    Mittelstaedt, Florian
    Rutter, Ignaz
    Spoerhase, Joachim
    Wolff, Alexander
    Zink, Johannes
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2022, 2023, 13764 : 418 - 431