Coefficient inequalities for a new class of univalent functions

被引:6
|
作者
Darus M. [1 ]
Ibrahim R.W. [1 ]
机构
[1] School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi
关键词
Concave functions; Convex set; Meromorphic univalent functions; Sǎlǎgean operator;
D O I
10.1134/S1995080208040045
中图分类号
学科分类号
摘要
In the present article, a new class ∑ α , 0 ≤ α < 1, of analytic and univalent functions f: U → C where U is an open unit disk, satisfying the standard normalization f(0) = f′(0) - 1 = 0 is considered. Assume that f ∑ α takes the form such that A 0,0 = 0 and A 1,0 = 1. Also, we define the family Co(p), where p (0, 1), of functions f: U →C that satisfy the following conditions: (i) f ∑ α is meromorphic in U and has a simple pole at the point p. (ii) f(0) = f′(0) - 1 = 0. (iii) f maps U conformally onto a set whose complement with respect toC is convex. We call such functions concave univalent functions. We prove some coefficient estimates for functions in this class when f has the expansion The second part of the article concerns some properties of a generalized Sǎlǎgean operator for functions in ∑ α . Moreover, a result on subordination for the functions f ∑ α is given. © 2008 MAIK Nauka.
引用
收藏
页码:221 / 229
页数:8
相关论文
共 50 条
  • [31] On inequalities for bounded univalent functions
    Eva A. Gallardo-Gutiérrez
    Christian Pommerenke
    Journal d'Analyse Mathématique, 2019, 138 : 673 - 685
  • [32] Differential Inequalities and Univalent Functions
    Rosihan M. Ali
    Milutin Obradović
    Saminathan Ponnusamy
    Lobachevskii Journal of Mathematics, 2019, 40 : 1242 - 1249
  • [33] The inequalities filled by the univalent functions
    Wolff, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1941, 44 (6/10): : 956 - 963
  • [34] Initial Coefficient Bounds for a General Class of Bi-Univalent Functions
    Orhan, H.
    Magesh, N.
    Balaji, V. K.
    FILOMAT, 2015, 29 (06) : 1259 - 1267
  • [35] Coefficient Bounds for a Certain Class of Analytic and Bi-Univalent Functions
    Srivastava, H. M.
    Eker, Sevtap Sumer
    Ali, Rosihan M.
    FILOMAT, 2015, 29 (08) : 1839 - 1845
  • [37] On the coefficient problem for univalent functions
    Sheretov, VG
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (02) : 379 - 387
  • [38] CLASS OF UNIVALENT FUNCTIONS
    JUNEJA, OP
    MOGRA, ML
    BULLETIN DES SCIENCES MATHEMATIQUES, 1979, 103 (04): : 435 - 447
  • [39] COEFFICIENT REGIONS OF UNIVALENT FUNCTIONS
    FRIEDLAND, S
    SCHIFFER, M
    JOURNAL D ANALYSE MATHEMATIQUE, 1977, 31 : 125 - 168