Many triangulated odd-dimensional spheres

被引:0
|
作者
Eran Nevo
Francisco Santos
Stedman Wilson
机构
[1] Ben Gurion University of the Negev,Department of Mathematics
[2] Hebrew University,Einstein Institute of Mathematics
[3] Universidad de Cantabria,Departamento de Matemáticas, Estadística y Computación
来源
Mathematische Annalen | 2016年 / 364卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the (2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k-1)$$\end{document}-sphere has at most 2O(nklogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{O(n^k \log n)}$$\end{document} combinatorially distinct triangulations with n vertices, for every k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}. Here we construct at least 2Ω(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (n^k)}$$\end{document} such triangulations, improving on the previous constructions which gave 2Ω(nk-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (n^{k-1})}$$\end{document} in the general case (Kalai) and 2Ω(n5/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (n^{5/4})}$$\end{document} for k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} (Pfeifle–Ziegler). We also construct 2Ω(nk-1+1k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\Omega (n^{k-1+\frac{1}{k}})}$$\end{document} geodesic (a.k.a. star-convex) n-vertex triangulations of the (2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k-1)$$\end{document}-sphere. As a step for this (in the case k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document}) we construct n-vertex 4-polytopes containing Ω(n3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^{3/2})$$\end{document} facets that are not simplices, or with Ω(n3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n^{3/2})$$\end{document} edges of degree three.
引用
收藏
页码:737 / 762
页数:25
相关论文
共 50 条
  • [31] On time-dependent collapsing branes and fuzzy odd-dimensional spheres
    Papageorgakis, C.
    Ramgoolam, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (30): : 6055 - 6086
  • [32] Rigidity for odd-dimensional souls
    Tapp, Kristopher
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 957 - 962
  • [33] Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres
    Pal, Arupkumar
    Sundar, S.
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2010, 4 (03) : 389 - 439
  • [34] Strichartz estimates for the Schrodinger equation on products of compact groups and odd-dimensional spheres
    Zhang, Yunfeng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 199 (199)
  • [35] Fractional Odd-Dimensional Mechanics
    Ali Khalili Golmankhaneh
    AlirezaKhalili Golmankhaneh
    Dumitru Baleanu
    MihaelaCristina Baleanu
    Advances in Difference Equations, 2011
  • [36] Fractional Odd-Dimensional Mechanics
    Golmankhaneh, Ali Khalili
    Golmankhaneh, Alireza Khalili
    Baleanu, Dumitru
    Baleanu, Mihaela Cristina
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [37] COBORDISM OF ODD-DIMENSIONAL DIFFEOMORPHISMS
    KRECK, M
    TOPOLOGY, 1976, 15 (04) : 353 - 361
  • [38] The odd-dimensional Goldberg conjecture
    Apostolov, Vestislav
    Draghici, Tedi
    Moroianu, Andrei
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (9-10) : 948 - 952
  • [39] Many triangulated 3-spheres
    Julian Pfeifle
    Günter M. Ziegler
    Mathematische Annalen, 2004, 330 : 829 - 837
  • [40] Many triangulated 3-spheres
    Pfeifle, J
    Ziegler, GM
    MATHEMATISCHE ANNALEN, 2004, 330 (04) : 829 - 837