It is known that the (2k-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2k-1)$$\end{document}-sphere has at most 2O(nklogn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{O(n^k \log n)}$$\end{document} combinatorially distinct triangulations with n vertices, for every k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 2$$\end{document}. Here we construct at least 2Ω(nk)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{\Omega (n^k)}$$\end{document} such triangulations, improving on the previous constructions which gave 2Ω(nk-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{\Omega (n^{k-1})}$$\end{document} in the general case (Kalai) and 2Ω(n5/4)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{\Omega (n^{5/4})}$$\end{document} for k=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=2$$\end{document} (Pfeifle–Ziegler). We also construct 2Ω(nk-1+1k)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2^{\Omega (n^{k-1+\frac{1}{k}})}$$\end{document} geodesic (a.k.a. star-convex) n-vertex triangulations of the (2k-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2k-1)$$\end{document}-sphere. As a step for this (in the case k=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=2$$\end{document}) we construct n-vertex 4-polytopes containing Ω(n3/2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega (n^{3/2})$$\end{document} facets that are not simplices, or with Ω(n3/2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega (n^{3/2})$$\end{document} edges of degree three.
机构:
Univ London, Univ London Queen Mary & Westfield Coll, Dept Phys, London E1 4NS, EnglandUniv London, Univ London Queen Mary & Westfield Coll, Dept Phys, London E1 4NS, England
Papageorgakis, C.
Ramgoolam, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London, Univ London Queen Mary & Westfield Coll, Dept Phys, London E1 4NS, EnglandUniv London, Univ London Queen Mary & Westfield Coll, Dept Phys, London E1 4NS, England
Ramgoolam, S.
INTERNATIONAL JOURNAL OF MODERN PHYSICS A,
2006,
21
(30):
: 6055
-
6086
机构:
Islamic Azad Univ, Mahabad Branch, Dept Phys, Mahabad 5913933137, IranCankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Golmankhaneh, Ali Khalili
Golmankhaneh, Alireza Khalili
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Urmia Branch, Dept Phys, Uromiyeh, IranCankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Golmankhaneh, Alireza Khalili
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Inst Space Sci, Magurele 76900, RomaniaCankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Baleanu, Dumitru
Baleanu, Mihaela Cristina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Phys, Bucharest 76900, Romania
Natl Mihail Sadoveanu High Sch, Bucharest, RomaniaCankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey