Simple models for strictly non-ergodic stochastic processes of macroscopic systems

被引:0
|
作者
G. George
L. Klochko
A. N. Semenov
J. Baschnagel
J. P. Wittmer
机构
[1] Université de Strasbourg & CNRS,Institut Charles Sadron
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate simple models for strictly non-ergodic stochastic processes xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} (t being the discrete time step) focusing on the expectation value v and the standard deviation δv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v$$\end{document} of the empirical variance v[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v[\mathbf {x}]$$\end{document} of finite time series x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}$$\end{document}. xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} is averaged over a fluctuating field σr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathbf{r}}$$\end{document} (r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{r}$$\end{document} being the microcell position) characterized by a quenched spatially correlated Gaussian field gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}. Due to the quenched gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-field δv(Δτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v(\varDelta \tau )$$\end{document} becomes a finite constant, Δne>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}> 0$$\end{document}, for large sampling times Δτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \tau $$\end{document}. The volume dependence of the non-ergodicity parameter Δne\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}$$\end{document} is investigated for different spatial correlations. Models with marginally long-ranged gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-correlations are successfully mapped on shear stress data from simulated amorphous glasses of polydisperse beads.
引用
收藏
相关论文
共 50 条
  • [41] Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes
    Mohamed El Machkouri
    Khalifa Es-Sebaiy
    Youssef Ouknine
    Journal of the Korean Statistical Society, 2016, 45 : 329 - 341
  • [42] A STATISTICAL-THEORY OF RATE CONSTANTS IN NON-ERGODIC SYSTEMS - COMMENT
    DELEON, N
    BERNE, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1982, 76 (10): : 5187 - 5188
  • [43] Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes
    El Machkouri, Mohamed
    Es-Sebaiy, Khalifa
    Ouknine, Youssef
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (03) : 329 - 341
  • [44] Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers
    Fang, Cong
    Cheng, Feng
    Lin, Zhouchen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [45] Overview and introduction to development of non-ergodic earthquake ground-motion models
    Grigorios Lavrentiadis
    Norman A. Abrahamson
    Kuehn M. Nicolas
    Yousef Bozorgnia
    Christine A. Goulet
    Anže Babič
    Jorge Macedo
    Matjaž Dolšek
    Nicholas Gregor
    Albert R. Kottke
    Maxime Lacour
    Chenying Liu
    Xiaofeng Meng
    Van-Bang Phung
    Chih-Hsuan Sung
    Melanie Walling
    Bulletin of Earthquake Engineering, 2023, 21 : 5121 - 5150
  • [46] Special issue of the bulletin of earthquake engineering on non-ergodic ground motion models
    Bozorgnia, Yousef
    Goulet, Christine
    Macedo, Jorge
    BULLETIN OF EARTHQUAKE ENGINEERING, 2023, 21 (11) : 5119 - 5120
  • [47] Overview and introduction to development of non-ergodic earthquake ground-motion models
    Lavrentiadis, Grigorios
    Abrahamson, Norman A.
    Nicolas, Kuehn M.
    Bozorgnia, Yousef
    Goulet, Christine A.
    Babic, Anze
    Macedo, Jorge
    Dolsek, Matjaz
    Gregor, Nicholas
    Kottke, Albert R.
    Lacour, Maxime
    Liu, Chenying
    Meng, Xiaofeng
    Phung, Van-Bang
    Sung, Chih-Hsuan
    Walling, Melanie
    BULLETIN OF EARTHQUAKE ENGINEERING, 2023, 21 (11) : 5121 - 5150
  • [48] ASYMPTOTIC OPTIMAL INFERENCE FOR NON-ERGODIC MODELS - BASAWA,IV, SCOTT,DJ
    BARNDORFFNIELSEN, OE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (387) : 734 - 735
  • [49] Special issue of the bulletin of earthquake engineering on non-ergodic ground motion models
    Yousef Bozorgnia
    Christine Goulet
    Jorge Macedo
    Bulletin of Earthquake Engineering, 2023, 21 : 5119 - 5120
  • [50] Spatial correlation of systematic effects of non-ergodic ground motion models in the Ridgecrest area
    Chenying Liu
    Jorge Macedo
    Nicolas Kuehn
    Bulletin of Earthquake Engineering, 2023, 21 : 5319 - 5345