Simple models for strictly non-ergodic stochastic processes of macroscopic systems

被引:0
|
作者
G. George
L. Klochko
A. N. Semenov
J. Baschnagel
J. P. Wittmer
机构
[1] Université de Strasbourg & CNRS,Institut Charles Sadron
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We investigate simple models for strictly non-ergodic stochastic processes xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} (t being the discrete time step) focusing on the expectation value v and the standard deviation δv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v$$\end{document} of the empirical variance v[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v[\mathbf {x}]$$\end{document} of finite time series x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {x}$$\end{document}. xt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_t$$\end{document} is averaged over a fluctuating field σr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathbf{r}}$$\end{document} (r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{r}$$\end{document} being the microcell position) characterized by a quenched spatially correlated Gaussian field gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}. Due to the quenched gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-field δv(Δτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta v(\varDelta \tau )$$\end{document} becomes a finite constant, Δne>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}> 0$$\end{document}, for large sampling times Δτ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta \tau $$\end{document}. The volume dependence of the non-ergodicity parameter Δne\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta _{\mathrm {ne}}$$\end{document} is investigated for different spatial correlations. Models with marginally long-ranged gr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{\mathbf{r}}$$\end{document}-correlations are successfully mapped on shear stress data from simulated amorphous glasses of polydisperse beads.
引用
收藏
相关论文
共 50 条
  • [1] Simple models for strictly non-ergodic stochastic processes of macroscopic systems
    George, G.
    Klochko, L.
    Semenov, A. N.
    Baschnagel, J.
    Wittmer, J. P.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (10):
  • [2] Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems
    Wittmer, J. P.
    Semenov, A. N.
    Baschnagel, J.
    EUROPEAN PHYSICAL JOURNAL E, 2022, 45 (08):
  • [3] Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems
    J. P. Wittmer
    A. N. Semenov
    J. Baschnagel
    The European Physical Journal E, 2022, 45
  • [4] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [5] Fluctuations of non-ergodic stochastic processes
    G. George
    L. Klochko
    A. N. Semenov
    J. Baschnagel
    J. P. Wittmer
    The European Physical Journal E, 2021, 44
  • [6] Fluctuations of non-ergodic stochastic processes
    George, G.
    Klochko, L.
    Semenov, A. N.
    Baschnagel, J.
    Wittmer, J. P.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (04):
  • [7] Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes
    Bel, Golan
    Nemenman, Ilya
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [8] PURE STRICTLY UNIFORM MODELS OF NON-ERGODIC MEASURE AUTOMORPHISMS
    Downarowicz, Tomasz
    Weiss, Benjamin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (02) : 863 - 884
  • [9] STRICTLY NON-ERGODIC ACTIONS ON HOMOGENEOUS SPACES
    DANI, SG
    DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) : 633 - 639
  • [10] Some characterizations of non-ergodic estimating functions for stochastic processes
    Hwang, S. Y.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (04) : 661 - 667