Some results of Young-type inequalities

被引:0
|
作者
Yonghui Ren
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
关键词
Arithmetic–geometric–harmonic; Kantorovich constant; Young-type inequalities; 15A45; 47A30; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al. (Linear Multilinear Algebra 63(3):622–635, 2015) under some conditions. That is to say: when 0<ν,τ<1,a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \nu , \tau <1,\ a,b>0$$\end{document}, we have a∇νb-a♯νba∇τb-a♯τb≤ν(1-ν)τ(1-τ)and(a∇νb)2-(a♯νb)2(a∇τb)2-(a♯τb)2≤ν(1-ν)τ(1-τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{a\nabla _{\nu }b-a\sharp _{\nu }b}{a\nabla _{\tau }b-a\sharp _{\tau }b}\le \frac{\nu (1-\nu )}{\tau (1-\tau )} \ \ { \mathrm {and}} \ \ \frac{(a\nabla _{\nu }b)^{2}-(a\sharp _{\nu } b)^{2}}{(a\nabla _{\tau }b)^{2}-(a\sharp _{\tau }b)^{2}}\le \frac{\nu (1-\nu )}{\tau (1-\tau )} \end{aligned}$$\end{document}for (b-a)(τ-ν)≥0;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b-a)(\tau -\nu )\ge 0;$$\end{document} and the inequalities are reversed if (b-a)(τ-ν)≤0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b-a)(\tau -\nu )\le 0.$$\end{document} In addition, we show a new Young-type inequality (1-vN+1+vN+2)a+(1-v2)b≤vvN-(N+1)avb1-v+(a-b)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (1-v^{N+1}+v^{N+2})a+(1-v^{2})b\le v^{vN-(N+1)}a^{v}b^{1-v}+(\sqrt{a}-\sqrt{b} \ )^{2} \end{aligned}$$\end{document}for 0≤v≤1,N∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le v\le 1, N\in {\mathbb {N}}$$\end{document} and a,b>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b>0.$$\end{document} Then we can get some related results about operators, Hilbert–Schmidt norms, determinants by these scalars results.
引用
收藏
相关论文
共 50 条
  • [21] Relationship between Cooper minima and Young-type interference
    Della Picca, Renata
    Fainstein, Pablo D.
    Dubois, Alain
    [J]. XXVII INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC 2011), PTS 1-15, 2012, 388
  • [22] Some Recent Results on Hardy-Type Inequalities
    Balinsky, A. A.
    Evans, W. D.
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2010, 4 (02): : 191 - 208
  • [24] Direct measurement of the central fringe velocity in Young-type experiments
    Chauvat, D
    Emile, O
    Brunel, M
    Le Floch, A
    [J]. PHYSICS LETTERS A, 2002, 295 (2-3) : 78 - 80
  • [25] Some refined Young type inequalities using different weights
    Nasiri, Leila
    Askari, Bahman
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (07)
  • [26] SOME RESULTS FOR HADAMARD-TYPE INEQUALITIES IN QUANTUM CALCULUS
    Taf, Sabrina
    Brahim, Kamel
    Riahi, Latifa
    [J]. MATEMATICHE, 2014, 69 (02): : 243 - 258
  • [27] Some Inequalities Related to Jensen-Type Results with Applications
    Baloch, Imran Abbas
    Mughal, Aqeel Ahmad
    Ul Haq, Absar
    Nonlaopon, Kamsing
    [J]. SYMMETRY-BASEL, 2022, 14 (08):
  • [28] Young-type interference in soft lepton scattering of diatomic homonuclear molecules
    Barp, Marcos, V
    Arretche, Felipe
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2022, 122 (10)
  • [29] Young-Type Interference in Collisions between Hydrogen Molecular Ions and Helium
    Schmidt, L. Ph. H.
    Schoessler, S.
    Afaneh, F.
    Schoeffler, M.
    Stiebing, K. E.
    Schmidt-Boecking, H.
    Doerner, R.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (17)
  • [30] Cooper minima and Young-type interferences in the photoionization of H2+
    Della Picca, R.
    Fainstein, P. D.
    Dubois, A.
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):