Some results of Young-type inequalities

被引:0
|
作者
Yonghui Ren
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
关键词
Arithmetic–geometric–harmonic; Kantorovich constant; Young-type inequalities; 15A45; 47A30; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, one of our main targets is to present some improvements of Young-type inequalities due to Alzer et al. (Linear Multilinear Algebra 63(3):622–635, 2015) under some conditions. That is to say: when 0<ν,τ<1,a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \nu , \tau <1,\ a,b>0$$\end{document}, we have a∇νb-a♯νba∇τb-a♯τb≤ν(1-ν)τ(1-τ)and(a∇νb)2-(a♯νb)2(a∇τb)2-(a♯τb)2≤ν(1-ν)τ(1-τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{a\nabla _{\nu }b-a\sharp _{\nu }b}{a\nabla _{\tau }b-a\sharp _{\tau }b}\le \frac{\nu (1-\nu )}{\tau (1-\tau )} \ \ { \mathrm {and}} \ \ \frac{(a\nabla _{\nu }b)^{2}-(a\sharp _{\nu } b)^{2}}{(a\nabla _{\tau }b)^{2}-(a\sharp _{\tau }b)^{2}}\le \frac{\nu (1-\nu )}{\tau (1-\tau )} \end{aligned}$$\end{document}for (b-a)(τ-ν)≥0;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b-a)(\tau -\nu )\ge 0;$$\end{document} and the inequalities are reversed if (b-a)(τ-ν)≤0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(b-a)(\tau -\nu )\le 0.$$\end{document} In addition, we show a new Young-type inequality (1-vN+1+vN+2)a+(1-v2)b≤vvN-(N+1)avb1-v+(a-b)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (1-v^{N+1}+v^{N+2})a+(1-v^{2})b\le v^{vN-(N+1)}a^{v}b^{1-v}+(\sqrt{a}-\sqrt{b} \ )^{2} \end{aligned}$$\end{document}for 0≤v≤1,N∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le v\le 1, N\in {\mathbb {N}}$$\end{document} and a,b>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b>0.$$\end{document} Then we can get some related results about operators, Hilbert–Schmidt norms, determinants by these scalars results.
引用
收藏
相关论文
共 50 条
  • [1] Some results of Young-type inequalities
    Ren, Yonghui
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [2] INEQUALITIES OF YOUNG-TYPE
    LOSONCZI, L
    [J]. MONATSHEFTE FUR MATHEMATIK, 1984, 97 (02): : 125 - 132
  • [3] GENERALIZATION OF YOUNG-TYPE INEQUALITIES
    Choi, Daeshik
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 99 - 106
  • [4] On Young-type inequalities of measurable operators
    Bekjan, Turdebek N.
    Ospanov, Myrzagali N.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5606 - 5617
  • [5] Young-type inequalities and their matrix analogues
    Alzer, Horst
    da Fonseca, Carlos M.
    Kovacec, Alexander
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03): : 622 - 635
  • [6] Some generalizations of real power form for Young-type inequalities and their applications
    Huy, Duong Quoc
    Van, Doan Thi Thuy
    Xinh, Dinh Thi
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 368 - 384
  • [7] REVERSE YOUNG-TYPE INEQUALITIES FOR MATRICES AND OPERATORS
    Bakherad, Mojtaba
    Krnic, Mario
    Moslehian, Mohammad Sal
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (04) : 1089 - 1105
  • [8] STRENGTHENINGS OF YOUNG-TYPE INEQUALITIES AND THE ARITHMETIC GEOMETRIC MEAN INEQUALITY
    Ren, Yonghui
    Li, Pengtong
    [J]. MATHEMATICA SLOVACA, 2022, 72 (05) : 1151 - 1162
  • [9] Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices
    Bani-Ahmad, Feras
    Rashid, Mohammad Hussein Mohammad
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [10] New versions of refinements and reverses of Young-type inequalities with the Kantorovich constant
    Rashid, Mohammad H. M.
    Bani-Ahmad, Feras
    [J]. SPECIAL MATRICES, 2023, 11 (01):