A quantum-inspired sentiment representation model for twitter sentiment analysis

被引:0
|
作者
Yazhou Zhang
Dawei Song
Peng Zhang
Xiang Li
Panpan Wang
机构
[1] Tianjin University,Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology
[2] Beijing Institute of Technology,School of Computer Science and Technology
[3] The Open University,School of Computing and Communications
来源
Applied Intelligence | 2019年 / 49卷
关键词
Sentiment analysis; Sentiment representation; Quantum theory; Density matrix;
D O I
暂无
中图分类号
学科分类号
摘要
Sentiment analysis aims to capture the diverse sentiment information expressed by authors in given natural language texts, and it has been a core research topic in many artificial intelligence areas. The existing machine-learning-based sentiment analysis approaches generally focus on employing popular textual feature representation methods, e.g., term frequency-inverse document frequency (tf-idf), n-gram features, and word embeddings, to construct vector representations of documents. These approaches can model rich syntactic and semantic information, but they largely fail to capture the sentiment information that is central to sentiment analysis. To address this issue, we propose a quantum-inspired sentiment representation (QSR) model. This model can not only represent the semantic content of documents but also capture the sentiment information. Specifically, since adjectives and adverbs are good indicators of subjective expression, this model first extracts sentiment phrases that match the designed sentiment patterns based on adjectives and adverbs. Then, both single words and sentiment phrases in the documents are modeled as a collection of projectors, which are finally encapsulated in density matrices through maximum likelihood estimation. These density matrices successfully integrate the sentiment information into the representations of documents. Extensive experiments are conducted on two widely used Twitter datasets, which are the Obama-McCain Debate (OMD) dataset and the Sentiment140 Twitter dataset. The experimental results show that our model significantly outperforms a number of state-of-the-art baselines and demonstrate the effectiveness of the QSR model for sentiment analysis.
引用
收藏
页码:3093 / 3108
页数:15
相关论文
共 50 条
  • [41] Sentiment Analysis of Turkish Twitter Data
    Shehu, Harisu Abdullahi
    Tokat, Sezai
    Sharif, Md. Haidar
    Uyaver, Sahin
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [42] Clustering and Sentiment Analysis on Twitter Data
    Ahuja, Shreya
    Dubey, Gaurav
    2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), 2017, : 420 - 424
  • [43] Automatic Sentiment Analysis of Twitter Messages
    Lima, Ana C. E. S.
    de Castro, Leandro N.
    2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON), 2012, : 52 - 57
  • [44] Sentiment Analysis of Twitter in Tourism Destinations
    Perez Cabanero, Carmen
    Bigne, Enrique
    Ruiz, Carla
    Carlos Cuenca, Antonio
    3RD INTERNATIONAL CONFERENCE ON ADVANCED RESEARCH METHODS AND ANALYTICS (CARMA 2020), 2020, : 181 - 189
  • [45] Feature Expansion for Sentiment Analysis in Twitter
    Setiawan, Erwin B.
    Widyantoro, Dwi H.
    Surendro, Kridanto
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 509 - 513
  • [46] SASM: A Tool for Sentiment Analysis on Twitter
    Onifade, O. F. W.
    Malik, M. A.
    2015 2ND WORLD SYMPOSIUM ON WEB APPLICATIONS AND NETWORKING (WSWAN), 2015,
  • [47] Sentiment analysis of multimodal twitter data
    Kumar, Akshi
    Garg, Geetanjali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (17) : 24103 - 24119
  • [48] Sentiment analysis and Twitter: a game proposal
    Marco Furini
    Manuela Montangero
    Personal and Ubiquitous Computing, 2018, 22 : 771 - 785
  • [49] Exploring Sentiment Analysis on Twitter Data
    Venugopalan, Manju
    Gupta, Deepa
    2015 EIGHTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2015, : 241 - 247
  • [50] Contextual semantics for sentiment analysis of Twitter
    Saif, Hassan
    He, Yulan
    Fernandez, Miriam
    Alani, Harith
    INFORMATION PROCESSING & MANAGEMENT, 2016, 52 (01) : 5 - 19