Liouville theorem for harmonic maps with potential

被引:0
|
作者
Qun Chen
机构
[1] Fudan University,Institute of Mathematics
[2] Central China Normal University,Mathematics Department
来源
manuscripta mathematica | 1998年 / 95卷
关键词
58E20; 53C21; 58G30;
D O I
暂无
中图分类号
学科分类号
摘要
LetM, N be complete manifolds,u:M →N be a harmonic map with potentialH, namely, a critical point of the functionalEH(u)=∫M[e(u) − H(u)], wheree(u) is the energy density ofu. We will give a Liouville theorem foru with a class of potentialsH’s.
引用
收藏
页码:507 / 517
页数:10
相关论文
共 50 条
  • [31] A theorem of Liouville type for harmonic morphisms
    Choi, G
    Yun, G
    GEOMETRIAE DEDICATA, 2001, 84 (1-3) : 179 - 182
  • [32] A Theorem of Liouville Type for Harmonic Morphisms
    Gundon Choi
    Gabjin Yun
    Geometriae Dedicata, 2001, 84 : 179 - 182
  • [33] A Liouville theorem for infinity harmonic functions
    Hong, Guanghao
    Zhao, Yizhen
    MANUSCRIPTA MATHEMATICA, 2020, 161 (3-4) : 363 - 375
  • [34] A Liouville theorem for infinity harmonic functions
    Guanghao Hong
    Yizhen Zhao
    manuscripta mathematica, 2020, 161 : 363 - 375
  • [35] A CHARACTERIZATION OF HARMONIC SECTIONS AND A LIOUVILLE THEOREM
    Stelmastchuk, Simao
    ARCHIVUM MATHEMATICUM, 2012, 48 (02): : 149 - 162
  • [36] Liouville theorems of subelliptic harmonic maps
    Liu Gao
    Lingen Lu
    Guilin Yang
    Annals of Global Analysis and Geometry, 2022, 61 : 293 - 307
  • [37] A Factorization Theorem for Harmonic Maps
    Sagman, Nathaniel
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11714 - 11740
  • [38] AN EXISTENCE THEOREM FOR HARMONIC MAPS
    LOHKAMP, J
    MANUSCRIPTA MATHEMATICA, 1990, 67 (01) : 21 - 23
  • [39] A Factorization Theorem for Harmonic Maps
    Nathaniel Sagman
    The Journal of Geometric Analysis, 2021, 31 : 11714 - 11740
  • [40] Liouville’s theorem for generalized harmonic function
    Weihua Wang
    Qihua Ruan
    Analysis and Mathematical Physics, 2020, 10