X-ray spectral parameters for a sample of 95 active galactic nuclei

被引:0
|
作者
A. A. Vasylenko
V. I. Zhdanov
E. V. Fedorova
机构
[1] Main Astronomical Observatory NAS of Ukraine,
[2] Taras Shevchenko National University of Kyiv,undefined
来源
关键词
Galaxies: Seyfert; X-rays: galaxies: active; Galaxies;
D O I
暂无
中图分类号
学科分类号
摘要
We present a broadband X-ray analysis of a new homogeneous sample of 95 active galactic nuclei (AGN) from the 22-month Swift/BAT all-sky survey. For this sample we treated jointly the X-ray spectra observed by XMM-Newton and INTEGRAL missions for the total spectral range of 0.5–250 keV. Photon index Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma$\end{document}, relative reflection R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document}, equivalent width of Fe Kα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{K}_{\alpha}$\end{document} line EWFeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{EW}_{\mathrm{FeK}}$\end{document}, hydrogen column density NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{H}}$\end{document}, exponential cut-off energy Ec\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{c}}$\end{document} and intrinsic luminosity Lcorr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\mathrm{corr}}$\end{document} are determined for all objects of the sample. We investigated correlations Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma$\end{document}–R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document}, EWFeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{EW}_{\mathrm{FeK}}$\end{document}–Lcorr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\mathrm{corr}}$\end{document}, Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma$\end{document}–Ec\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\mathrm{c}}$\end{document}, EWFeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{EW}_{\mathrm{FeK}}$\end{document}–NH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N_{\mathrm{H}}$\end{document}. Dependence “Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varGamma$\end{document}–R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R$\end{document}” for Seyfert 1/2 galaxies has been investigated separately. We found that the relative reflection parameter at low power-law indexes for Seyfert 2 galaxies is systematically higher than for Seyfert 1 ones. This can be related to an increasing contribution of the reflected radiation from the gas-dust torus. Our data show that there exists some anticorrelation between EWFeK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathit{EW}_{\mathrm{FeK}}$\end{document} and Lcorr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{\mathrm{corr}}$\end{document}, but it is not strong. We have not found statistically significant deviations from the AGN Unified Model.
引用
收藏
相关论文
共 50 条
  • [21] SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER
    Rivers, Elizabeth
    Markowitz, Alex
    Rothschild, Richard
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 193 (01):
  • [22] Active galactic nuclei unification and the X-ray background
    Treister, E
    Urry, CM
    ASTROPHYSICAL JOURNAL, 2005, 630 (01): : 115 - 121
  • [23] X-ray absorption and reflection in active galactic nuclei
    Turner, T. J.
    Miller, L.
    ASTRONOMY AND ASTROPHYSICS REVIEW, 2009, 17 (01): : 47 - 104
  • [24] LIMITS OF X-RAY VARIABILITY IN ACTIVE GALACTIC NUCLEI
    BARR, P
    MUSHOTZKY, RF
    NATURE, 1986, 320 (6061) : 421 - 423
  • [25] X-ray timing studies of active galactic nuclei
    Summons, D. P.
    McHardy, I. M.
    Uttley, P.
    Arevalo, P.
    Bhaskar, A.
    ASTROPHYSICS OF COMPACT OBJECTS, 2007, 968 : 381 - +
  • [26] Search for X-ray occultations in active galactic nuclei
    Torricelli-Ciamponi, G.
    Pietrini, P.
    Risaliti, G.
    Salvati, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 442 (03) : 2116 - 2130
  • [27] X-ray absorption and reflection in active galactic nuclei
    T. J. Turner
    L. Miller
    The Astronomy and Astrophysics Review, 2009, 17 : 47 - 104
  • [28] X-ray luminosity functions of active galactic nuclei
    Miyaji, T
    MULTIWAVELENGTH AGN SURVEYS, 2004, : 317 - 322
  • [29] ACTIVE GALACTIC NUCLEI - IGNITION OF X-RAY FLARES
    BARING, MG
    NATURE, 1992, 360 (6400) : 109 - 110
  • [30] Hard X-ray variability of active galactic nuclei
    Beckmann, V.
    Barthelmy, S. D.
    Courvoisier, T. J. -L.
    Gehrels, N.
    Soldi, S.
    Tueller, J.
    Wendt, G.
    ASTRONOMY & ASTROPHYSICS, 2007, 475 (03) : 827 - 835