In situ growth of Co3O4 nanoneedles on titanium mesh for electrocatalytic oxygen evolution

被引:0
|
作者
Zhouxige Tao
Lingjie Jiang
Xiating Jia
Hangxiang Xiao
Yan Liang
Boyan Yang
Pei Guo
Li Zhang
Haihua Yang
机构
[1] Hunan Institute of Science and Technology,College of Nanhu
[2] Hunan Institute of Science and Technology,College of Chemistry and Chemical Engineering
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Designing high-efficient and low cost of electrodes with seamless integration of substrate and electrocatalyst particles is of significant concern for electrocatalytic water splitting. In this study, we actualized in situ growth of Co3O4 nanoneedles on titanium (Ti) mesh (denoted as Co3O4@Ti) by a simple combination of hydrothermal approach and subsequently calcination treatment under relatively low temperatures. The as-prepared Co3O4@Ti samples were evaluated as anodes for electrocatalytic oxygen evolution reaction (OER) in alkaline electrolyte. It demonstrates that the optimized Co3O4@Ti electrode displayed good OER activity with a small overpotential of 416 mV at a current density of 20 mA cm−2, which is on a par with commercial RuO2 catalyst (overpotential of 403 mV at 20 mA cm−2). The satisfactory OER performance of Co3O4@Ti electrode is largely attributed to the seamless integration of conductive Ti mesh substrate and the direct growth of Co3O4 nanoneedles on Ti mesh with sufficient active sites. This study suggests the potential application of Co3O4@Ti electrode as preeminent OER catalyst.
引用
收藏
页码:23275 / 23284
页数:9
相关论文
共 50 条
  • [21] On the Stability of Co3O4 Oxygen Evolution Electrocatalysts in Acid
    Etzi Coller Pascuzzi, Marco
    van Velzen, Matthijs
    Hofmann, Jan P.
    Hensen, Emiel J. M.
    CHEMCATCHEM, 2021, 13 (01) : 459 - 467
  • [22] Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction
    Li, Ying
    Li, Fu-Min
    Meng, Xin-Ying
    Li, Shu-Ni
    Zeng, Jing-Hui
    Chen, Yu
    ACS CATALYSIS, 2018, 8 (03): : 1913 - 1920
  • [23] Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution
    Bocca, C
    Cerisola, G
    Magnone, E
    Barbucci, A
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (08) : 699 - 707
  • [24] Electrocatalytic Activity of Co3O4/C for Oxygen Reduction and the Reaction Mechanism
    Li Shang
    Zhu Guangwen
    Qiu Peng
    Rong Gang
    Pan Mu
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (04) : 624 - 629
  • [25] Heterostructured CoO/Co3O4 nanowire array on Titanium mesh as efficient electrocatalysts for hydrogen evolution reaction
    Feng, Zhonghan
    Pu, Jiayan
    Zhang, Xinyue
    Zhang, Wenxiu
    Liu, Maosheng
    Cui, Liang
    Liu, Jingquan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 881
  • [26] Co3O4/CeO2 Heterojunction: Preparation and Electrocatalytic Oxygen Evolution Performance in Alkaline Medium
    Zhu Sai-Nan
    Wang Wei
    Tao You-Rong
    Zhang Xin-Yu
    Wu Xing-Cai
    Zhang Dun-Ming
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (07) : 1337 - 1344
  • [27] Sub-Nanometer-Sized Iridium Species Decorated on Mesoporous Co3O4 for Electrocatalytic Oxygen Evolution
    Wang, Wenquan
    Xi, Shunming
    Shao, Yalong
    Gao, Xi
    Lin, Jing
    Meng, Chao
    Wang, Wenjing
    Guo, Xiaosong
    Li, Guicun
    CHEMELECTROCHEM, 2019, 6 (06): : 1846 - 1852
  • [28] Continuous oxygen vacancy engineering of the Co3O4 layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction
    Zhang, Haoxuan
    Zhang, Jiahao
    Li, Yuhang
    Jiang, Haibo
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13506 - 13510
  • [29] Co3O4 supported by ultrathin-layered graphitic carbon nitride for efficient electrocatalytic evolution of oxygen
    Luo, Ruixue
    Li, Xi
    Guo, Youping
    Fu, Renchun
    REACTION CHEMISTRY & ENGINEERING, 2024, 9 (07) : 1751 - 1761
  • [30] Co3O4 Supported on β-Mo2C with Different Interfaces for Electrocatalytic Oxygen Evolution Reaction
    Zhang, Jiaxin
    Li, Sisi
    Liu, Xiaohan
    Zheng, Haoquan
    Zhang, Wei
    Cao, Rui
    CHEMSUSCHEM, 2023, 16 (19)