Generalized Hessian and External Approximations in Variational Problems of Second Order

被引:0
|
作者
Cesare Davini
Roberto Paroni
机构
[1] Universitá degli Studi di Udine,Dipartimento di Ingegneria Civile
来源
Journal of Elasticity | 2003年 / 70卷
关键词
numerical methods; non-conforming approximations; Γ-convergence; anisotropic plates;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a suitable notion of generalized Hessian and show that it can be used to construct approximations by means of piecewise linear functions to the solutions of variational problems of second order. An important guideline of our argument is taken from the theory of the Γ-convergence. The convergence of the method is proved for integral functionals whose integrand is convex in the Hessian and satisfies standard growth conditions.
引用
收藏
页码:149 / 174
页数:25
相关论文
共 50 条
  • [1] Generalized Hessian and external approximations in variational problems of second order
    Davini, C
    Paroni, R
    [J]. JOURNAL OF ELASTICITY, 2003, 70 (1-3) : 149 - 174
  • [2] Second order duality for variational problems involving generalized convexity
    Jayswal A.
    Stancu-Minasian I.M.
    Choudhury S.
    [J]. OPSEARCH, 2015, 52 (3) : 582 - 596
  • [3] Second-order duality for the variational problems
    Chen, XH
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) : 261 - 270
  • [4] On a class of second order variational problems with constraints
    Moshe Marcus
    Alexander J. Zaslavski
    [J]. Israel Journal of Mathematics, 1999, 111 : 1 - 28
  • [5] Second-Order Duality for Variational Problems
    Husain, I.
    Ahmed, A.
    Masoodi, Mashoob
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2009, 2 (02): : 278 - 295
  • [6] On a class of second order variational problems with constraints
    Marcus, M
    Zaslavski, AJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1999, 111 (1) : 1 - 28
  • [7] Second order monotonicities and second order variational-like inequality problems
    Choudhury S.
    Jayswal A.
    Ahmad I.
    [J]. Rendiconti del Circolo Matematico di Palermo (1952 -), 2016, 65 (1): : 123 - 137
  • [8] Higher-order generalized invexity in variational problems
    Padhan, S. K.
    Nahak, C.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (11) : 1334 - 1341
  • [9] Second-order L∞ variational problems and the ∞-polylaplacian
    Katzourakis, Nikos
    Pryer, Tristan
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (02) : 115 - 140
  • [10] INVARIANCE THEORY FOR SECOND-ORDER VARIATIONAL PROBLEMS
    LOGAN, JD
    BLAKESLEE, JS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A310 - A310