Higher-order generalized invexity in variational problems

被引:1
|
作者
Padhan, S. K. [1 ]
Nahak, C. [2 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Math, Burla 768018, India
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
higher-order duality; variational problem; higher-order -(; )-invexity; weak duality; strong duality; converse duality; Mangasarian and Mond-Wier type duality; SYMMETRIC DUALITY; 2ND-ORDER DUALITY;
D O I
10.1002/mma.2685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce higher-order duality (Mangasarian type and Mond-Wier type) of variational problems. Under higher-order generalized invexity assumptions on functions that compose the primal problem, higher-order duality results (weak duality, strong duality, and converse duality) are derived for this pair of problems. Also, we establish many examples and counter-examples to support our investigation. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1334 / 1341
页数:8
相关论文
共 50 条
  • [1] Higher-Order Generalized Invexity in Control Problems
    Padhan, S. K.
    Nahak, C.
    [J]. JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2011, 2011
  • [2] Higher-order symmetric duality with higher-order generalized invexity
    Padhan S.K.
    Nahak C.
    [J]. Journal of Applied Mathematics and Computing, 2015, 48 (1-2) : 407 - 420
  • [3] Higher-order generalized invexity and duality in mathematical programming
    Mishra, SK
    Rueda, NG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (01) : 173 - 182
  • [4] Higher-order symmetric duality in multiobjective programming problems under higher-order invexity
    Padhan, S. K.
    Nahak, C.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1705 - 1712
  • [5] Higher-order generalized invexity and duality in nondifferentiable mathematical programming
    Mishra, SK
    Rueda, NG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (02) : 496 - 506
  • [6] Invariant Higher-Order Variational Problems
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (02) : 413 - 458
  • [7] Invariant Higher-Order Variational Problems
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    [J]. Communications in Mathematical Physics, 2012, 309 : 413 - 458
  • [8] Invariant Higher-Order Variational Problems II
    François Gay-Balmaz
    Darryl D. Holm
    David M. Meier
    Tudor S. Ratiu
    François-Xavier Vialard
    [J]. Journal of Nonlinear Science, 2012, 22 : 553 - 597
  • [9] Invariant Higher-Order Variational Problems II
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (04) : 553 - 597
  • [10] Higher-order discrete variational problems with constraints
    Colombo, Leonardo
    Martin de Diego, David
    Zuccalli, Marcela
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (09)