Strong-Type Inequality for Convolution with Square Root of the Poisson Kernel

被引:0
|
作者
I. N. Katkovskaya
V. G. Krotov
机构
来源
Mathematical Notes | 2004年 / 75卷
关键词
convolution with square root of the Poisson kernel; Poisson kernel; maximal operator; compact Hausdorff space; Borel measure;
D O I
暂无
中图分类号
学科分类号
摘要
The boundary behavior of convolutions with Poisson kernel and with square root of the Poisson kernel is essentially different. The former has only a nontangential limit. The latter involves convergence over domains admitting the logarithmic order of tangency with the boundary (P. Sjögren, J.-O. Rönning). This result was generalized by the authors to spaces of homogeneous type. Here we prove the boundedness in Lp, p > 1, of the corresponding maximal operator. Only a weak-type inequality was known before.
引用
下载
收藏
页码:542 / 552
页数:10
相关论文
共 50 条
  • [21] SQUARE INEQUALITY AND STRONG ORDER RELATION
    Ando, Tsuyoshi
    ADVANCES IN OPERATOR THEORY, 2016, 1 (01): : 1 - 7
  • [22] A Cyclic Square Root Inequality Proposal
    Lukarevski, Martin
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (03): : 284 - 284
  • [23] A Log Square-Root Inequality
    Andriopoulos, Spiros
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (06): : 619 - 619
  • [24] A Cyclic Square Root Inequality Solution
    Zhou, Li
    Ali, A.
    Arshagi, H. I.
    Bailey, D.
    Campbell, E.
    Diminnie, C.
    Bataille, M.
    Berkane, A.
    Boukharfane, R.
    Braune, E.
    Chapman, R.
    Dalyay, P. P.
    Fera, G.
    Fleischman, D.
    Geupel, O.
    Giugiuc, L.
    Goldenberg, M.
    Kaplan, M.
    Grivaux, J.
    Hannan, A.
    Herman, E. A.
    Holland, F.
    Hwang, S.
    Karaivanov, B.
    Vassilev, T. S.
    Khalili, P.
    Koo, K. T. L.
    Kouba, O.
    Lai, W.
    Lossers, O. P.
    Marinescu, D.
    Matejicka, L.
    Mikayelyan, V.
    Nandan, R.
    Noh, T. Y.
    Pathak, A.
    Perfetti, P.
    Rakhimjanovich, F. A.
    Reich, S.
    Reid, M.
    Smith, D.
    Smith, J. C.
    Stadler, A.
    Stanciu, N.
    Stenger, A.
    Stong, R.
    Tauraso, R.
    Voros, Z.
    Wiandt, T.
    Yegan, M. R.
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (03): : 284 - 285
  • [25] Poisson Counts, Square Root Transformation and Small Area Estimation Square Root Transformation
    Ghosh, Malay
    Ghosh, Tamal
    Hirose, Masayo Y.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2022, 84 (02): : 449 - 471
  • [26] A Strong-Type Furstenberg-Sarkozy Theorem for Sets of Positive Measure
    Durcik, Polona
    Kovac, Vjekoslav
    Stipcic, Mario
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (08)
  • [27] Patterning of random interconnect using double exposure of strong-type PSMs
    Fukuda, H
    Hagiwara, T
    OPTICAL MICROLITHOGRAPHY XIV, PTS 1 AND 2, 2001, 4346 : 695 - 702
  • [28] A convergence result for square roots of the Poisson kernel in the bidisk
    Rönning, JO
    MATHEMATICA SCANDINAVICA, 1999, 84 (01) : 81 - 92
  • [29] Temporal Poisson Square Root Graphical Models
    Geng, Sinong
    Kuang, Zhaobin
    Peissig, Peggy
    Page, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [30] Mean Square Error Convergence of Kernel Type Estimator of the Intensity Function for Periodic Poisson Process
    Rachmawati, Ro'fah Nur
    Budiharto, Widodo
    INTERNATIONAL CONFERENCE ON ADVANCES SCIENCE AND CONTEMPORARY ENGINEERING 2012, 2012, 50 : 474 - 485