integer partitions;
multiplicity of parts;
limiting distributions;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the asymptotic behavior of the maximal multiplicity μn = μn(λ) of the parts in a partition λ of the positive integer n, assuming that λ is chosen uniformly at random from the set of all such partitions. We prove that πμn/(6n)1/2 converges weakly to max jXj/j as n→∞, where X1, X2, … are independent and exponentially distributed random variables with common mean equal to 1.