A note on the motion representation and configuration update in time stepping schemes for the constrained rigid body

被引:0
|
作者
Andreas Müller
机构
[1] Johannes Kepler Universitat Linz,
来源
BIT Numerical Mathematics | 2016年 / 56卷
关键词
Constrained rigid body; Numerical time integration; Multibody dynamics; Absolute coordinate formulation; Rigid body kinematics; Screws; Lie groups; Isotropy groups; 65L80; 34C40; 70Exx;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics of a holonomically constrained rigid body can be modeled by Newton-Euler equations subjected to geometric constraints. This is frequently formulated as a differential-algebraic equation (DAE) system of index 1. In multibody system (MBS) dynamics it is common (1) to numerically solve this system by means of integration schemes for ordinary differential equations, and (2) to treat the rigid body motion on the direct product Lie group SO(3)×R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SO}\,(3) \times {\mathbb {R}}^{3}$$\end{document}, although rigid body motions form the semidirect product Lie group SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document}. It is has been observed that the constraint satisfaction depends on which Lie group is used as configuration space (c-space). In this paper the problem is considered from a geometric perspective. It is shown that the constraints are exactly satisfied by a numerical integration scheme if they define a subgroup of the c-space. The subgroups of SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document} have a significance for modeling mechanical systems, including lower kinematic (Reuleaux) pairs and are implicitly used in MBS modeling. It is concluded that SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document} is the appropriate c-space for numerical DAE modeling of a constrained rigid body. This result does not immediately apply to MBS, however.
引用
收藏
页码:995 / 1015
页数:20
相关论文
共 50 条
  • [31] Determining Contact Data for Time Stepping Rigid Body Simulations with Convex Polyhedral Geometries
    Yi, Bjoern Cheng
    Drumwright, Evan M.
    2016 IEEE INTERNATIONAL CONFERENCE ON SIMULATION, MODELING, AND PROGRAMMING FOR AUTONOMOUS ROBOTS (SIMPAR), 2016, : 24 - 30
  • [32] CONVERGENCE OF A CLASS OF SEMI-IMPLICIT TIME-STEPPING SCHEMES FOR NONSMOOTH RIGID MULTIBODY DYNAMICS
    Gavrea, Bogdan I.
    Anitescu, Mihai
    Potra, Florian A.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) : 969 - 1001
  • [33] NOTE ON THE MATHEMATICAL ANALYSIS OF THE MOTION OF A RIGID BODY IN A GENERALIZED INCOMPRESSIBLE NAVIER - STOKES FLUID
    Al Baba, Hind
    Ghosh, Amrita
    Muha, Boris
    Necasova, Sarka
    TOPICAL PROBLEMS OF FLUID MECHANICS 2021, 2021, : 1 - 7
  • [34] An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction
    Stewart, DE
    Trinkle, JC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1996, 39 (15) : 2671 - 2691
  • [35] Stabilization of rigid body attitude motion with time-delayed feedback
    Samiei, Ehsan
    Sanyal, Amit K.
    Butcher, Eric A.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 68 : 509 - 517
  • [36] The Motion of a Rigid Body with a Point Constrained to Move on a Fixed Given Surface Using a Multibody Approach
    Pandrea, Nicolae
    Stanescu, Nicolae-Doru
    ROMANIAN JOURNAL OF ACOUSTICS AND VIBRATION, 2012, 9 (02): : 71 - 75
  • [37] THE EXPLICIT GIBBS-APPELL EQUATIONS of MOTION for RIGID-BODY CONSTRAINED MECHANICAL SYSTEM
    Mirtaheri, S. Mohammad
    Zohoor, Hassan
    2018 6TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM 2018), 2018, : 304 - 309
  • [38] Recognition of 6 DOF Rigid Body Motion Trajectories using a Coordinate-Free Representation
    De Schutter, Joris
    Di Lello, Enrico
    De Schutter, Jochem F. M.
    Matthysen, Roel
    Benoit, Tuur
    De Laet, Tinne
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011, : 2071 - 2078
  • [39] Generalizing Demonstrated Motions and Adaptive Motion Generation using an Invariant Rigid Body Trajectory Representation
    Vochten, Maxim
    De laet, Tinne
    De Schutter, Joris
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 234 - 241
  • [40] A RECURSIVE HYBRID TIME-STEPPING SCHEME FOR INTERMITTENT CONTACT IN MULTI-RIGID-BODY DYNAMICS
    Bhalerao, Kishor D.
    Anderson, Kurt S.
    Trinkle, Jeffery C.
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 443 - 455