A note on the motion representation and configuration update in time stepping schemes for the constrained rigid body

被引:0
|
作者
Andreas Müller
机构
[1] Johannes Kepler Universitat Linz,
来源
BIT Numerical Mathematics | 2016年 / 56卷
关键词
Constrained rigid body; Numerical time integration; Multibody dynamics; Absolute coordinate formulation; Rigid body kinematics; Screws; Lie groups; Isotropy groups; 65L80; 34C40; 70Exx;
D O I
暂无
中图分类号
学科分类号
摘要
The dynamics of a holonomically constrained rigid body can be modeled by Newton-Euler equations subjected to geometric constraints. This is frequently formulated as a differential-algebraic equation (DAE) system of index 1. In multibody system (MBS) dynamics it is common (1) to numerically solve this system by means of integration schemes for ordinary differential equations, and (2) to treat the rigid body motion on the direct product Lie group SO(3)×R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SO}\,(3) \times {\mathbb {R}}^{3}$$\end{document}, although rigid body motions form the semidirect product Lie group SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document}. It is has been observed that the constraint satisfaction depends on which Lie group is used as configuration space (c-space). In this paper the problem is considered from a geometric perspective. It is shown that the constraints are exactly satisfied by a numerical integration scheme if they define a subgroup of the c-space. The subgroups of SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document} have a significance for modeling mechanical systems, including lower kinematic (Reuleaux) pairs and are implicitly used in MBS modeling. It is concluded that SE(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{SE}\,(3) $$\end{document} is the appropriate c-space for numerical DAE modeling of a constrained rigid body. This result does not immediately apply to MBS, however.
引用
收藏
页码:995 / 1015
页数:20
相关论文
共 50 条
  • [1] A note on the motion representation and configuration update in time stepping schemes for the constrained rigid body (vol 56, pg 995, 2016)
    Mueller, Andreas
    BIT NUMERICAL MATHEMATICS, 2016, 56 (03) : 1017 - 1018
  • [2] Rigid body time-stepping schemes in a quasi-static setting
    Gavrea, Bogdan
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 353 - 357
  • [3] NOTE ON RIGID BODY MOTION
    BISSHOPP, KE
    JOURNAL OF MECHANISMS, 1971, 6 (03): : 259 - &
  • [4] Constrained Whole Body Motion Planning in Task Configuration and Time
    Inho Lee
    Jaesung Oh
    HyoIn Bae
    International Journal of Precision Engineering and Manufacturing, 2018, 19 : 1651 - 1658
  • [5] Constrained Whole Body Motion Planning in Task Configuration and Time
    Lee, Inho
    Oh, Jaesung
    Bae, HyoIn
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2018, 19 (11) : 1651 - 1658
  • [6] Multiple rigid body reorientation using relative motion with constrained final system configuration
    Rubenstein, DS
    Melton, RG
    ASTRODYNAMICS 1995, 1996, 90 : 1031 - 1046
  • [7] NOTE ON EQUATIONS OF MOTION OF A RIGID BODY
    ERICKSEN, WS
    SIAM REVIEW, 1966, 8 (02) : 206 - &
  • [8] Multiple rigid-body reorientation using relative motion with constrained final system configuration
    Rubenstein, David S.
    Melton, Robert G.
    Journal of Guidance, Control, and Dynamics, 22 (03): : 441 - 446
  • [9] Multiple rigid-body reorientation using relative motion with constrained final system configuration
    Rubenstein, DS
    Melton, RG
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1999, 22 (03) : 441 - 446
  • [10] Note on free symmetric rigid body motion
    Vladimir Dragović
    Borislav Gajić
    Božidar Jovanović
    Regular and Chaotic Dynamics, 2015, 20 : 293 - 308