Quasi-one-dimensional method for the two-dimensional inverse problem of magnetotelluric sounding

被引:0
|
作者
Berezina N.I. [1 ]
Dmitriev V.I. [1 ]
Mershchikova N.A. [1 ]
机构
[1] Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
electromagnetic sounding; inverse problems; mathematical modeling; quasi-layered media;
D O I
10.1007/s10598-011-9098-6
中图分类号
学科分类号
摘要
The article presents a quasi-one-dimensional method for solving the inverse problem of electromagnetic sounding. The quasi-one-dimensional method is an iteration process that in each iteration solves a parametric one-dimensional inverse problem and a two-dimensional direct problem. The solution results of these problems are applied to update the input values for the parametric one-dimensional inverse problem in the next iteration. The method has been implemented for a two-dimensional inverse problem of magnetotelluric sounding in a quasi-layered medium. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:229 / 237
页数:8
相关论文
共 50 条
  • [22] Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models
    Cisonni, Julien
    Van Hirtum, Annemie
    Luo, Xiao Yu
    Pelorson, Xavier
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (09) : 903 - 910
  • [23] Sensitivity analysis explains quasi-one-dimensional current transport in two-dimensional materials
    Boll, Mads
    Lotz, Mikkel R.
    Hansen, Ole
    Wang, Fei
    Kjaer, Daniel
    Boggild, Peter
    Petersen, Dirch H.
    PHYSICAL REVIEW B, 2014, 90 (24):
  • [24] Experimental validation of quasi-one-dimensional and two-dimensional steady glottal flow models
    Julien Cisonni
    Annemie Van Hirtum
    Xiao Yu Luo
    Xavier Pelorson
    Medical & Biological Engineering & Computing, 2010, 48 : 903 - 910
  • [25] Quasi-one-dimensional transport of nondegenerate electrons in two-dimensional systems with a fluctuation potential
    B. A. Aronzon
    E. Z. Meilikhov
    D. A. Bakaushin
    A. S. Vedeneev
    V. V. Ryl’kov
    Journal of Experimental and Theoretical Physics Letters, 1997, 66 : 668 - 674
  • [26] Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors
    Xu, Renjing
    Zhang, Shuang
    Wang, Fan
    Yang, Jiong
    Wang, Zhu
    Pei, Jiajie
    Myint, Ye Win
    Xing, Bobin
    Yu, Zongfu
    Fu, Lan
    Qin, Qinghua
    Lu, Yuerui
    ACS NANO, 2016, 10 (02) : 2046 - 2053
  • [27] Two-dimensional symbiotic solitons and quantum droplets in a quasi-one-dimensional optical lattice
    Al-Marzoug, S. M.
    Baizakov, B. B.
    Bahlouli, H.
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [28] Quasi-one-dimensional transport of nondegenerate electrons in two-dimensional systems with a fluctuation potential
    Aronzon, BA
    Meilikhov, EZ
    Bakaushin, DA
    Vedeneev, AS
    Ryl'kov, VV
    JETP LETTERS, 1997, 66 (10) : 668 - 674
  • [29] Quasi-one-dimensional mathematical model of the two-dimensional supersonic cavity mean flow
    Wang, Qi
    Yang, Rui
    Zhao, Yu-xin
    Liu, Wei
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2025, 112
  • [30] Two-dimensional chiral stacking orders in quasi-one-dimensional charge density waves
    Kim, Sun-Woo
    Kim, Hyun-Jung
    Cheon, Sangmo
    Kim, Tae-Hwan
    PHYSICAL REVIEW B, 2020, 102 (12)