MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs

被引:0
|
作者
Yang Li
Ruhao Wan
Shixin Zhu
机构
[1] HeFei University of Technology,School of Mathematics
关键词
Hulls; Entanglement-assisted quantum error-correcting codes; Generalized Reed–Solomon codes; Extended generalized Reed–Solomon codes; 94B05; 81P70;
D O I
暂无
中图分类号
学科分类号
摘要
The hull of a linear code is the intersection of itself with its dual code with respect to certain inner product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper, we construct several new classes of maximum distance separable (MDS) codes via (extended) generalized Reed-Solomon (GRS) codes and determine their Euclidean or Hermitian hulls. As a consequence, four new classes of MDS codes with Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible dimensions are constructed. As applications, for the former, we further construct four new families of entanglement-assisted quantum error-correcting codes (EAQECCs) and four new families of MDS EAQECCs of length n>q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>q+1$$\end{document}. Meanwhile, many of the distance parameters of our MDS EAQECCs are greater than ⌈q2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{q}{2} \rceil $$\end{document} or q; for the latter, we show some examples on Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes. In addition, two new general methods for constructing extended GRS codes with (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-dimensional Hermitian hull and Hermitian self-orthogonal extended GRS codes are also provided.
引用
收藏
相关论文
共 50 条
  • [41] Hulls of linear codes revisited with applications
    Satanan Thipworawimon
    Somphong Jitman
    Journal of Applied Mathematics and Computing, 2020, 62 : 325 - 340
  • [42] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Hao Chen
    Designs, Codes and Cryptography, 2023, 91 : 2665 - 2676
  • [43] MDS, Hermitian almost MDS, and Gilbert–Varshamov quantum codes from generalized monomial-Cartesian codes
    Beatriz Barbero-Lucas
    Fernando Hernando
    Helena Martín-Cruz
    Gary McGuire
    Quantum Information Processing, 23
  • [44] Hulls of linear codes revisited with applications
    Thipworawimon, Satanan
    Jitman, Somphong
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 325 - 340
  • [45] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Chen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2665 - 2676
  • [46] Further results on Euclidean and Hermitian linear complementary dual codes
    Liu, Zihui
    Wang, Jie
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 59 : 104 - 133
  • [47] The dimensions of Galois hulls of linear codes derived from an improved propagation rule and related applications
    Xie, Dengcheng
    Li, Yang
    Zhu, Shixin
    Zhang, Yuanting
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [48] TWO NEW CLASSES OF HERMITIAN SELF-ORTHOGONAL NON-GRS MDS CODES AND THEIR APPLICATIONS
    Luo, Gaojun
    Cao, Xiwang
    Ezerman, Martianus Frederic
    Ling, San
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 921 - 933
  • [49] Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) : 5484 - 5489
  • [50] MDS, Hermitian almost MDS, and Gilbert-Varshamov quantum codes from generalized monomial-Cartesian codes
    Barbero-Lucas, Beatriz
    Hernando, Fernando
    Martin-Cruz, Helena
    McGuire, Gary
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)