MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs

被引:0
|
作者
Yang Li
Ruhao Wan
Shixin Zhu
机构
[1] HeFei University of Technology,School of Mathematics
关键词
Hulls; Entanglement-assisted quantum error-correcting codes; Generalized Reed–Solomon codes; Extended generalized Reed–Solomon codes; 94B05; 81P70;
D O I
暂无
中图分类号
学科分类号
摘要
The hull of a linear code is the intersection of itself with its dual code with respect to certain inner product. Both Euclidean and Hermitian hulls are of theorical and practical significance. In this paper, we construct several new classes of maximum distance separable (MDS) codes via (extended) generalized Reed-Solomon (GRS) codes and determine their Euclidean or Hermitian hulls. As a consequence, four new classes of MDS codes with Hermitian hulls of flexible dimensions and six new classes of MDS codes with Euclidean hulls of flexible dimensions are constructed. As applications, for the former, we further construct four new families of entanglement-assisted quantum error-correcting codes (EAQECCs) and four new families of MDS EAQECCs of length n>q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>q+1$$\end{document}. Meanwhile, many of the distance parameters of our MDS EAQECCs are greater than ⌈q2⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lceil \frac{q}{2} \rceil $$\end{document} or q; for the latter, we show some examples on Euclidean self-orthogonal and one-dimensional Euclidean hull MDS codes. In addition, two new general methods for constructing extended GRS codes with (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-dimensional Hermitian hull and Hermitian self-orthogonal extended GRS codes are also provided.
引用
收藏
相关论文
共 50 条
  • [1] MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs
    Li, Yang
    Wan, Ruhao
    Zhu, Shixin
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [2] Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs
    Fang, Weijun
    Fu, Fang-Wei
    Li, Lanqiang
    Zhu, Shixin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (06) : 3527 - 3537
  • [3] On Euclidean Hulls of MDS Codes
    Xiaolei Fang
    Meiqing Liu
    Jinquan Luo
    Cryptography and Communications, 2021, 13 : 1 - 14
  • [4] On Euclidean Hulls of MDS Codes
    Fang, Xiaolei
    Liu, Meiqing
    Luo, Jinquan
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (01): : 1 - 14
  • [5] Euclidean and Hermitian LCD MDS codes
    Claude Carlet
    Sihem Mesnager
    Chunming Tang
    Yanfeng Qi
    Designs, Codes and Cryptography, 2018, 86 : 2605 - 2618
  • [6] Euclidean and Hermitian LCD MDS codes
    Carlet, Claude
    Mesnager, Sihem
    Tang, Chunming
    Qi, Yanfeng
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (11) : 2605 - 2618
  • [7] On Linear Codes Whose Hermitian Hulls are MDS
    Luo, Gaojun
    Sok, Lin
    Ezerman, Martianus Frederic
    Ling, San
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (07) : 4889 - 4904
  • [8] On MDS codes with galois hulls of arbitrary dimensions
    Li, Yang
    Zhu, Shixin
    Li, Ping
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (03): : 565 - 587
  • [9] On MDS codes with galois hulls of arbitrary dimensions
    Yang Li
    Shixin Zhu
    Ping Li
    Cryptography and Communications, 2023, 15 : 565 - 587
  • [10] CONSTRUCTION OF LINEAR CODES WITH VARIOUS HERMITIAN HULL DIMENSIONS AND RELATED EAQECCS
    Liu, Ruowen
    Li, Shitao
    Shi, Minjia
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (02) : 588 - 603