Asymptotics of variance of the lattice point count

被引:0
|
作者
Jiří Janáček
机构
[1] Academy of Sciences of the Czech Republic,Institute of Physiology
来源
关键词
point lattice; Fourier transform; volume; variance;
D O I
暂无
中图分类号
学科分类号
摘要
The variance of the number of lattice points inside the dilated bounded set rD with random position in ℝd has asymptotics ∼ rd−1 if the rotational average of the squared modulus of the Fourier transform of the set is O(ϰ−d−1). The asymptotics follow from Wiener’s Tauberian theorem.
引用
收藏
页码:751 / 758
页数:7
相关论文
共 50 条
  • [11] THE ASYMPTOTICS OF A LATTICE POINT PROBLEM ASSOCIATED TO A FINITE NUMBER OF POLYNOMIALS .2.
    LICHTIN, B
    DUKE MATHEMATICAL JOURNAL, 1995, 77 (03) : 699 - 751
  • [12] Variance asymptotics for the area of planar cylinder processes generated by Brillinger-mixing point processes
    Daniela Flimmel
    Lothar Heinrich
    Lithuanian Mathematical Journal, 2023, 63 : 58 - 80
  • [13] Variance asymptotics for the area of planar cylinder processes generated by Brillinger-mixing point processes
    Flimmel, Daniela
    Heinrich, Lothar
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (01) : 58 - 80
  • [14] Asymptotics for sliced average variance estimation
    Li, Yingxing
    Zhu, Li-Xing
    ANNALS OF STATISTICS, 2007, 35 (01): : 41 - 69
  • [15] JOINT POINT AND VARIANCE ESTIMATION UNDER A HIERARCHICAL BAYESIAN MODEL FOR SURVEY COUNT DATA
    Savitsky, Terrance D.
    Gershunskaya, Julie
    Crankshaw, Mark
    ANNALS OF APPLIED STATISTICS, 2023, 17 (03): : 2002 - 2018
  • [16] PATH COUNT ASYMPTOTICS AND STIRLING NUMBERS
    Petersen, K.
    Varchenko, A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (06) : 1909 - 1919
  • [17] A new handle on three-point coefficients: OPE asymptotics from genus two modular in variance
    Cardy, John
    Maloney, Alexander
    Maxfield, Henry
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):
  • [18] Lattice Equations and Semiclassical Asymptotics
    V. L. Chernyshev
    V. E. Nazaikinskii
    A. V. Tsvetkova
    Russian Journal of Mathematical Physics, 2023, 30 : 152 - 164
  • [19] Lattice Equations and Semiclassical Asymptotics
    Chernyshev, V. L.
    Nazaikinskii, V. E.
    Tsvetkova, A. V.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2023, 30 (02) : 152 - 164
  • [20] Asymptotics of knotted lattice polygons
    Orlandini, E
    Tesi, MC
    van Rensburg, EJJ
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 5953 - 5967