Positive-Unlabeled Learning for Knowledge Distillation

被引:0
|
作者
Ning Jiang
Jialiang Tang
Wenxin Yu
机构
[1] Southwest University of Science and Technology,School of Computer Science and Technology
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Convolutional neural networks; Model compression; Knowledge distillation; Positive-unlabeled learning; Attention mechanism; Soft-target;
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional neural networks (CNNs) have greatly promoted the development of artificial intelligence. In general, CNNs with high performance are over-parameterized, requiring massive calculations to process and predict the data. It leads CNNs unable to apply to exiting resource-limited intelligence devices. In this paper, we propose an efficient model compression framework based on knowledge distillation to train a compact student network by a large teacher network. Our key point is to introduce a positive-unlabeled (PU) classifier to promote the compressed student network to learn the features of the prominent teacher network as much as possible. During the training, the PU classifier is to discriminate the features of the teacher network as high-quality and discriminate the features of the student network as low-quality. Simultaneously, the student network learns knowledge from the teacher network through the soft-targets and attention features. Extensive experimental evaluations on four benchmark image classification datasets show that our method outperforms the prior works with a large margin at the same parameters and calculations cost. When selecting the VGGNet19 as the teacher network to train on the CIFAR dataset, the student network VGGNet13 achieves 94.47% and 75.73% accuracy on the CIFAR-10 and CIFAR-100 datasets, which improved 1.02% and 2.44%, respectively.
引用
收藏
页码:2613 / 2631
页数:18
相关论文
共 50 条
  • [31] Screening drug-target interactions with positive-unlabeled learning
    Lihong Peng
    Wen Zhu
    Bo Liao
    Yu Duan
    Min Chen
    Yi Chen
    Jialiang Yang
    Scientific Reports, 7
  • [32] A Positive-Unlabeled Learning Algorithm for Urban Flood Susceptibility Modeling
    Li, Wenkai
    Liu, Yuanchi
    Liu, Ziyue
    Gao, Zhen
    Huang, Huabing
    Huang, Weijun
    LAND, 2022, 11 (11)
  • [33] Positive-unlabeled learning in bioinformatics and computational biology: a brief review
    Li, Fuyi
    Dong, Shuangyu
    Leier, Andre
    Han, Meiya
    Guo, Xudong
    Xu, Jing
    Wang, Xiaoyu
    Pan, Shirui
    Jia, Cangzhi
    Zhang, Yang
    Webb, Geoffrey, I
    Coin, Lachlan J. M.
    Li, Chen
    Song, Jiangning
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [34] Deep Generative Positive-Unlabeled Learning under Selection Bias
    Na, Byeonghu
    Kim, Hyemi
    Song, Kyungwoo
    Joo, Weonyoung
    Kim, Yoon-Yeong
    Moon, Il-Chul
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1155 - 1164
  • [35] Screening drug-target interactions with positive-unlabeled learning
    Peng, Lihong
    Zhu, Wen
    Liao, Bo
    Duan, Yu
    Chen, Min
    Chen, Yi
    Yang, Jialiang
    SCIENTIFIC REPORTS, 2017, 7
  • [36] Spotting Fake Reviews via Collective Positive-Unlabeled Learning
    Li, Huayi
    Chen, Zhiyuan
    Liu, Bing
    Wei, Xiaokai
    Shao, Jidong
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 899 - 904
  • [37] AdaSampling for Positive-Unlabeled and Label Noise Learning With Bioinformatics Applications
    Yang, Pengyi
    Ormerod, John T.
    Liu, Wei
    Ma, Chendong
    Zomaya, Albert Y.
    Yang, Jean Y. H.
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (05) : 1932 - 1943
  • [38] Biometric identity recognition based on contrastive positive-unlabeled learning
    Sun, Le
    Hua, Yiwen
    Muhammad, Ghulam
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 83
  • [39] Positive-unlabeled learning for coronary artery segmentation in CCTA images
    Chen, Fei
    Li, Sulei
    Wei, Chen
    Zhang, Yue
    Guo, Kaitai
    Zheng, Yang
    Cao, Feng
    Liang, Jimin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [40] Positive-Unlabeled Learning with Non-Negative Risk Estimator
    Kiryo, Ryuichi
    Niu, Gang
    du Plessis, Marthinus C.
    Sugiyama, Masashi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30